
Cell Broadband Engine Architecture

Version 1.02

October 11, 2007

Copyright and Disclaimer
© Copyright International Business Machines Corporation, Sony Computer Entertainment Inc., Toshiba Corporation 2005,
2007

All Rights Reserved
Printed in the United States of America October 2007

Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change Sony and SCEI product specifications or warranties. Nothing in this document shall operate as an
express or implied license or indemnity under the intellectual property rights of Sony and SCEI or third parties. All informa-
tion contained in this document was obtained in specific environments, and is presented as an illustration. The results
obtained in other operating environments can vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will Sony and
SCEI be liable for damages arising directly or indirectly from any use of the information contained in this document.

Sony Corporation
1-7-1 Konan,

Minato-ku, Tokyo, 108-0075 Japan

Sony Computer Entertainment Inc.
2-6-21 Minami-Aoyama, Minato-ku,

Tokyo, 107-0062 Japan

The Sony home page can be found at http://www.sony.net
The SCEI home page can be found at http://www.scei.co.jp

The Cell Broadband Engine home page can be found at http://cell.scei.co.jp

October 11, 2007
Version 1.02

 Cell Broadband Engine Architecture
Contents
List of Figures ... 11
List of Tables ... 13
Preface ... 15

Who Should Read This Manual .. 15
Document Organization .. 15
Related Publications ... 16
Conventions and Notation ... 17
References to Registers, Fields, and Bits ... 18
Endian Order ... 18

Revision Log ... 19
1. Introduction to Cell Broadband Engine Architecture .. 27

1.1 Organization of a CBEA-Compliant Processor ... 27
1.1.1 PowerPC Processor Element .. 29
1.1.2 Synergistic Processor Unit .. 29
1.1.3 Memory Flow Controller .. 29
1.1.4 Internal Interrupt Controller .. 30

1.2 Storage Types ... 30
1.2.1 Local Storage Addressing ... 30
1.2.2 Main Storage Addressing .. 31
1.2.3 Main Storage Attributes ... 31

1.3 Cache Replacement Management Facility ... 32
1.4 Instructions, Commands, and Facilities .. 32
1.5 Reserved Fields and Registers ... 32
1.6 Implementation-Dependent Fields and Registers ... 33

User Mode Environment ..35
2. Overview .. 36

2.1 Instruction and Command Classes ... 36
2.1.1 Defined Class .. 36
2.1.2 Illegal Class .. 37
2.1.3 Reserved Class ... 37

2.2 Forms of Defined Instructions and Commands ... 37
2.2.1 Preferred Forms .. 37
2.2.2 Invalid Forms ... 38
2.2.3 Optional Forms .. 38
2.2.4 Optional Fields ... 38

2.3 Exceptions ... 38
2.4 SPU Events ... 39

3. Storage Models ... 41
3.1 Virtual Storage Model .. 41
3.2 SPU Local Storage Model ... 41

3.2.1 Local Storage Access .. 42
3.2.1.1 Mapping Requirements .. 42
3.2.1.2 Local Storage Access Exceptions .. 42
Version 1.02
October 11, 2007

Contents

Page 3 of 358

Cell Broadband Engine Architecture
3.3 Single-Copy Atomicity ... 42
3.4 Cache Models ... 43
3.5 Memory Coherence ... 43
3.6 Storage Control Attributes ... 44
3.7 Shared Storage ... 45

4. PowerPC Processor Element ... 47
4.1 PowerPC Architecture, Book I and Book II Compatibility .. 47

4.1.1 Optional Features in PowerPC Architecture, Book I (Required for CBEA) 47
4.1.2 Incompatibilities with PowerPC Architecture, Book I ... 47
4.1.3 Optional Features in PowerPC Architecture, Book II (Required for CBEA) 48
4.1.4 Incompatibilities with PowerPC Architecture, Book II .. 48
4.1.5 Extensions to the PowerPC Architecture, Books I and II ... 48

5. Synergistic Processor Unit ... 49
6. Memory Flow Controller ... 51

6.1 MFC Facilities .. 52

7. MFC Commands .. 55
7.1 Command Classes .. 57

7.1.1 Defined Commands ... 57
7.1.2 Illegal Commands .. 60
7.1.3 Reserved Commands .. 61

7.2 Command Exceptions ... 61
7.3 MFC Command Parameters ... 62
7.4 List Commands and List Elements .. 63
7.5 Get Commands (Main Storage to Local Storage) ... 64

7.5.1 Get Command .. 64
7.5.2 Get with Fence or with Barrier Command .. 64
7.5.3 Get List Command ... 64
7.5.4 Get List with Fence or with Barrier Command ... 65

7.6 Put Commands (Local Storage to Main Storage) .. 65
7.6.1 Put Command .. 65
7.6.2 Put with Fence or with Barrier Command .. 66
7.6.3 Put List Command ... 66
7.6.4 Put List with Fence or with Barrier Command .. 66
7.6.5 Put Result (hint) Command .. 66

7.7 Storage Control Commands .. 67
7.7.1 SL1 Data Cache Range Touch Command .. 67
7.7.2 SL1 Data Cache Range Touch for Store Command .. 68
7.7.3 SL1 Data Cache Range Set to Zero Command ... 68
7.7.4 SL1 Data Cache Range Store Command .. 68
7.7.5 SL1 Data Cache Range Flush Command .. 69

7.8 MFC Atomic Update Commands .. 70
7.8.1 Get Lock Line and Reserve Command .. 70
7.8.2 Put Lock Line Conditional Command ... 71
7.8.3 Put Lock Line Unconditional Command ... 72
7.8.4 Put Queued Lock Line Unconditional Command ... 72

7.9 MFC Synchronization Commands ... 73
7.9.1 MFC Synchronize Command ... 75
Contents

Page 4 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
7.9.2 MFC Enforce In Order Execution of I/O Command ... 76
7.9.3 Barrier Command .. 76
7.9.4 Send Signal Command .. 77
7.9.5 Send Signal with Fence or with Barrier Command .. 78

8. Problem-State Memory-Mapped Registers ... 79
8.1 MFC Proxy Command Parameter Registers ... 80

8.1.1 MFC Command Opcode Register ... 81
8.1.2 MFC Class ID Register .. 82
8.1.3 MFC Command Tag Register .. 83
8.1.4 MFC Transfer Size Register .. 84
8.1.5 MFC Local Storage Address Register ... 85
8.1.6 MFC Effective Address High Register ... 86
8.1.7 MFC Effective Address Low Register .. 87

8.2 MFC Proxy Command Issue Sequence .. 88
8.3 MFC Proxy Command Queue Status and Control Registers .. 89

8.3.1 MFC Command Status Register .. 90
8.3.2 MFC Queue Status Register ... 91

8.4 Proxy Tag-Group Completion Facility ... 92
8.4.1 Proxy Tag-Group Query Type Register ... 93
8.4.2 Proxy Tag-Group Query Mask Register .. 94
8.4.3 Proxy Tag-Group Status Register ... 95

8.5 SPU Control and Status Facilities ... 96
8.5.1 SPU Run Control Register ... 96
8.5.2 SPU Status Register .. 97
8.5.3 SPU Next Program Counter Register .. 99

8.6 Mailbox Facility .. 101
8.6.1 SPU Outbound Mailbox Register ... 102
8.6.2 SPU Inbound Mailbox Register ... 103
8.6.3 SPU Mailbox Status Register .. 104

8.7 SPU Signal Notification Facility ... 105
8.7.1 SPU Signal Notification 1 Register .. 106
8.7.2 SPU Signal Notification 2 Register .. 107

8.8 MFC Multisource Synchronization Facility .. 108
8.8.1 MFC Multisource Synchronization Register .. 109

9. Synergistic Processor Unit Channels ... 113
9.1 MFC SPU Command Parameter Channels .. 116

9.1.1 MFC Command Opcode Channel ... 117
9.1.2 MFC Class ID Channel .. 118
9.1.3 MFC Command Tag Identification Channel .. 119
9.1.4 MFC Transfer Size or List Size Channel ... 120
9.1.5 MFC Local Storage Address Channel ... 121
9.1.6 MFC Effective Address Low or List Address Channel ... 122
9.1.7 MFC Effective Address High Channel ... 124

9.2 MFC SPU Command Issue Sequence .. 125
9.3 MFC Tag-Group Status Channels ... 126

9.3.1 Determining the Status of Tag Groups .. 126
9.3.2 Determining Command Completion .. 128
9.3.3 MFC Write Tag-Group Query Mask Channel .. 129
9.3.4 MFC Read Tag-Group Query Mask Channel .. 131
Version 1.02
October 11, 2007

Contents

Page 5 of 358

Cell Broadband Engine Architecture
9.3.5 MFC Write Tag Status Update Request Channel .. 132
9.3.6 MFC Read Tag-Group Status Channel .. 133
9.3.7 MFC Read List Stall-and-Notify Tag Status Channel ... 135
9.3.8 MFC Write List Stall-and-Notify Tag Acknowledgment Channel .. 136

9.4 MFC Read Atomic Command Status Channel .. 137
9.5 SPU Mailbox Channels ... 138

9.5.1 SPU Write Outbound Mailbox Channel .. 139
9.5.2 SPU Write Outbound Interrupt Mailbox Channel ... 140
9.5.3 SPU Read Inbound Mailbox Channel .. 141

9.6 SPU Signalling Channels .. 142
9.6.1 SPU Signal Notification 1 Channel .. 143
9.6.2 SPU Signal Notification 2 Channel .. 144

9.7 SPU Decrementer ... 145
9.7.1 SPU Write Decrementer Channel .. 145
9.7.2 SPU Read Decrementer Channel .. 146

9.8 SPU Read Machine Status Channel ... 147
9.9 SPU Interrupt-Related Channels ... 148

9.9.1 SPU Write State Save-and-Restore Channel .. 148
9.9.2 SPU Read State Save-and-Restore Channel .. 148

9.10 MFC Write Multisource Synchronization Request Channel .. 149
9.11 SPU Event Facility ... 150

9.11.1 SPU Read Event Status Channel .. 153
9.11.2 SPU Write Event Mask Channel .. 157
9.11.3 SPU Read Event Mask Channel .. 159
9.11.4 SPU Write Event Acknowledgment Channel ... 161

9.12 SPU Event Definitions ... 163
9.12.1 MFC Tag-Group Status Update Event ... 163
9.12.2 MFC List Command Stall-and-Notify Event ... 163
9.12.3 MFC SPU Command Queue Available Event .. 165
9.12.4 SPU Inbound Mailbox Available Event .. 166
9.12.5 SPU Decrementer Event .. 166
9.12.6 SPU Outbound Interrupt Mailbox Available Event ... 167
9.12.7 SPU Outbound Mailbox Available Event .. 168
9.12.8 SPU Signal Notification 2 Available Event ... 169
9.12.9 SPU Signal Notification 1 Available Event ... 170
9.12.10 Lock Line Reservation Lost Event ... 170
9.12.11 Privileged Attention Event .. 172
9.12.12 Multisource Synchronization Event .. 172

10. Storage Access Ordering ... 175
10.1 Order of Command Execution ... 177
10.2 Main Storage Domain Access Ordering .. 177
10.3 Local Storage Domain Access Ordering ... 179
10.4 Cross-Domain Storage Access Order ... 180
10.5 Cumulative Access Ordering ... 180
10.6 MFC Overlapped Accesses ... 180
10.7 Atomic Accesses ... 180
10.8 Store Combining .. 181
10.9 Storage Ordering of I/O Accesses ... 181
Contents

Page 6 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
11. SPU Isolation Facility ... 183
11.1 SPU Isolation Facility Features ... 183
11.2 SPU Operating States ... 185

Privileged Mode Environment ..187
12. Overview .. 189

12.1 Privileged Mode Facility Organization ... 189
12.1.1 SPE Privilege 1 Facilities ... 190
12.1.2 SPE Privilege 2 Facilities ... 193
12.1.3 PPE Privilege 1 Facilities ... 195

13. PowerPC Architecture, Book III Compatibility ... 197
13.1 Optional Features in PowerPC Architecture, Book III (Required for CBEA) 197
13.2 Incompatibilities with PowerPC Architecture, Book III ... 197
13.3 Extensions to the PowerPC Architecture .. 197

14. Storage Addressing .. 199
14.1 PPE Segment Lookaside Buffer Management .. 200
14.2 SPE Segment Lookaside Buffer Management .. 200

14.2.1 SLB Mapping ... 200
14.2.2 SLB Index Register .. 201
14.2.3 SLB Effective Segment ID Register ... 202
14.2.4 SLB Virtual Segment ID Register .. 203
14.2.5 SLB Invalidate Entry Register .. 205
14.2.6 SLB Invalidate All Register .. 206

14.3 Translation Lookaside Buffer Management .. 207
14.3.1 TLB Mapping ... 208
14.3.2 TLB Index Hint Register .. 209
14.3.3 TLB Index Register ... 210
14.3.4 TLB Virtual Page Number Register ... 211
14.3.5 TLB Real Page Number Register .. 212
14.3.6 TLB Invalidate Entry Register .. 214
14.3.7 TLB Invalidate All Register .. 216

14.4 Real-Mode Storage Control Facilities ... 217
14.4.1 PPE Real-Mode Storage Control Facility .. 217
14.4.2 MFC Real-Mode Address Boundary Register ... 218

15. MFC Privileged Facilities .. 221
15.1 MFC State Register One ... 221
15.2 MFC Logical Partition ID Register ... 223
15.3 MFC Storage Description Register ... 224
15.4 MFC Data Address Register ... 225
15.5 MFC Data Storage Interrupt Status Register .. 226
15.6 MFC Address Compare Control Register ... 227
15.7 MFC Local Storage Address Compare Facility ... 229

15.7.1 MFC Local Storage Address Compare Register ... 229
15.7.2 MFC Local Storage Compare Result Register .. 230

15.8 MFC Command Error Register ... 231
15.9 MFC Data Storage Interrupt Pointer Register ... 232
Version 1.02
October 11, 2007

Contents

Page 7 of 358

Cell Broadband Engine Architecture
15.10 MFC Control Register .. 233
15.11 MFC Atomic Flush Register .. 236
15.12 SPU Outbound Interrupt Mailbox Register .. 237

16. SPU Privileged Facilities ... 239
16.1 SPU Privileged Control Register ... 239
16.2 SPU Local Storage Limit Register ... 241
16.3 SPU Channel Access Facility .. 242

16.3.1 SPU Channel Index Register ... 242
16.3.2 SPU Channel Data Register .. 243
16.3.3 SPU Channel Count Register .. 244

16.4 SPU Configuration Register .. 245

17. SPE Context Save and Restore .. 247
18. PPE Address Range Facility ... 249

18.1 Range Start Register ... 251
18.2 Range Mask Register .. 252
18.3 Class ID Register .. 253

19. Cache Replacement Management Facility .. 255
19.1 Replacement Management Table Example .. 255
19.2 RMT Index Generation Example ... 256

19.2.1 RMT Index Register ... 257
19.2.2 RMT Data Register .. 258

20. Resource Allocation Management ... 259
21. Interrupt Facilities ... 261

21.1 Interrupt Classification ... 261
21.2 Interrupt Presentation .. 262
21.3 Internal Interrupt Controller Registers ... 263

21.3.1 Interrupt Pending Port Registers .. 263
21.3.2 Interrupt Generation Port Register ... 267
21.3.3 Interrupt Current Priority Level Register .. 268

21.4 SPU and MFC External Interrupt Definitions ... 269
21.5 SPU and MFC Interrupt Generation Process .. 270

21.5.1 Class 0 Interrupts ... 270
21.5.2 Class 1 Interrupts ... 272
21.5.3 Class 2 Interrupts ... 274

21.6 MFC Interrupt Mask Registers .. 276
21.6.1 Class 0 Interrupt Mask Register ... 276
21.6.2 Class 1 Interrupt Mask Register ... 277
21.6.3 Class 2 Interrupt Mask Register ... 278

21.7 MFC Interrupt Status Registers ... 279
21.7.1 Class 0 Interrupt Status Register ... 280
21.7.2 Class 1 Interrupt Status Register ... 281
21.7.3 Class 2 Interrupt Status Register ... 282

21.8 Interrupt Routing Register ... 283

22. Power Management ... 285
Contents

Page 8 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
23. Version Control ... 287
23.1 CBEA-Compliant Processor Version Register .. 287
23.2 PPE Processor Version Register .. 288
23.3 SPU Version Register ... 289
23.4 MFC Version Register ... 290
23.5 SPU Identification Register ... 291

Appendix A. Memory Maps .. 293
A.1 SPE Problem State Memory Map ... 296
A.2 SPE Privilege 1 Memory Map ... 298
A.3 SPE Privilege 2 Memory Map ... 301
A.4 PPE Privilege 1 Memory Map ... 302
A.5 Internal Interrupt Controller Memory Map ... 303

Appendix B. SPU Channel Map ... 305

Appendix C. CBEA-Specific PPE Special Purpose Registers 309

Appendix D. Defined Commands .. 311

Appendix E. Extensions to the PowerPC Architecture ... 315
E.1 Software Management of TLBs (optional) .. 315
E.2 Mediated External Exception Extension (optional) ... 316

E.2.1 Using the Mediated External Exception Extension ... 317
E.3 Multiple Concurrent Large Pages (optional) ... 318
E.4 Defined Behavior for Inaccessible SPRs .. 319
E.5 Vector/SIMD Multimedia Extension (optional) .. 319

Appendix F. Examples of Access Ordering ... 321
Glossary ... 329
Index ... 341
Version 1.02
October 11, 2007

Contents

Page 9 of 358

Cell Broadband Engine Architecture
Contents

Page 10 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
List of Figures
Figure 1-1. CBEA-Compliant Processor System .. 28

Figure 6-1. Typical MFC Block Diagram ... 51

Figure 9-1. Logical Representation of SPU Event Support .. 151

Figure 10-1. Storage Domains in a CBEA-Compliant Processor ... 176

Figure 11-1. SPU State Transitions .. 186

Figure 14-1. Real-Mode Storage Boundary (showing instruction fetches and data fetches) 217

Figure 14-2. Real-Mode Storage Boundary (showing all DMA transfers) .. 218

Figure 18-1. Generation of Class ID from the Address Range Registers ... 249

Figure 19-1. RMT Index Generation ... 257

Figure 21-1. Interrupt Presentation ... 262

Figure 21-2. MFC Class 0 Interrupt Generation Process ... 271

Figure 21-3. MFC Class 1 Interrupt Generation Process ... 273

Figure 21-4. MFC Class 2 Interrupt Generation Process ... 275
Version 1.02
October 11, 2007

List of Figures

Page 11 of 358

Cell Broadband Engine Architecture
List of Figures

Page 12 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
List of Tables
Table 1-1. Sizes of Main Storage Address Spaces ... 31

Table 7-1. Parameter Mnemonics ... 56

Table 7-2. Data Transfer or MFC DMA Commands .. 58

Table 7-3. SL1 Storage Control Commands ... 59

Table 7-4. MFC Synchronization Commands ... 60

Table 7-5. MFC Atomic Commands .. 60

Table 7-6. Command Errors and Alignment Errors ... 61

Table 8-1. SPE Problem-State Memory Map .. 79

Table 9-1. SPU Channel Instructions .. 113

Table 9-2. SPU Channel Map ... 114

Table 12-1. SPE Privilege 1 Memory Map .. 190

Table 12-2. SPE Privilege 2 Memory Map .. 193

Table 12-3. PPE Privilege 1 Memory Map .. 195

Table 19-1. Typical RMT Entry for an 8-Way Set Associative Cache ... 255

Table 21-1. Internal Interrupt Controller Memory Map .. 263

Table 21-2. SPU and MFC Interrupt Class Definitions .. 269

Table 21-3. SPU and MFC External Interrupt Definitions .. 269

Table 22-1. Power Management States .. 285

Table A-1. CBEA-Compliant Processor Memory Map ... 294

Table A-2. SPE Problem State Memory Map .. 296

Table A-3. SPE Privilege 1 Memory Map .. 298

Table A-4. SPE Privilege 2 Memory Map .. 301

Table A-5. PPE Privilege 1 Memory Map .. 302

Table A-6. Internal Interrupt Controller Memory Map .. 303

Table B-1. SPU Channel Map ... 305

Table C-1. PPE Special Purpose Register Map .. 309

Table D-1. Parameter Mnemonics ... 311

Table D-2. Data Transfer or MFC DMA Commands .. 312

Table D-3. SL1 Storage Control Commands ... 313

Table D-4. MFC Synchronization Commands ... 314

Table D-5. MFC Atomic Commands .. 314
Version 1.02
October 11, 2007

List of Tables

Page 13 of 358

Cell Broadband Engine Architecture
List of Tables

Page 14 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Preface

This document defines the Cell Broadband Engine™ Architecture (CBEA). The information contained in this
document allows various CBEA-compliant processor implementations to meet the needs of a wide variety of
systems and applications. Compatibility with the CBEA allows applications and privileged software to migrate
from one implementation to another with minor changes.

For a specific implementation of the CBEA, see the specific implementation documentation.

Who Should Read This Manual

This manual is intended for designers who plan to develop products that use the CBEA. Readers of this
manual should be familiar with the documents listed in Related Publications on page 16. In addition, indi-
vidual implementations of the CBEA should have their own documentation for that implementation.

Document Organization

The CBEA document is divided into two environments: the user mode environment (UME) and the privileged
mode environment (PME). In general, the UME describes the commands and facilities available to an appli-
cation. The PME describes the facilities available to an operating system or to hypervisor code. Together,
these two environments define the CBEA. Implementation details and compliance with the architecture for a
specific implementation are provided separately.

Document Division Description

Preface Describes this document, related documents, the intended audience, and
other general information.

Revision Log Lists all significant changes made to the document since its initial release.

Introduction Provides a high-level overview of the Cell Broadband Engine Architecture
(CBEA).

User Mode Environment

Defines the base instruction set, command set, storage models, and facili-
ties available to an application programmer, as well as compatibility with the
PowerPC Architecture™.
The following sections are included:

• Overview
• Storage Models
• PowerPC Processor Element
• Synergistic Processor Unit
• Memory Flow Controller
• MFC Commands
• Problem-State Memory-Mapped Registers
• Synergistic Processor Unit Channels
• Storage Access Ordering
• SPU Isolation Facility
Version 1.02
October 11, 2007

Preface

Page 15 of 358

Cell Broadband Engine Architecture
Related Publications

A list of documents related to the CBEA follows.

 Privileged Mode Environment

Describes the additional instructions and facilities, beyond those defined in
user mode environment, that are provided by the CBEA. This division cov-
ers instructions and facilities, not available to the application programmer,
that affect storage control, interrupts, and timing facilities.
The following sections are included:

• Overview
• PowerPC Architecture, Book III Compatibility
• Storage Addressing
• MFC Privileged Facilities
• SPU Privileged Facilities
• SPE Context Save and Restore
• PPE Address Range Facility
• Cache Replacement Management Facility
• Resource Allocation Management
• Interrupt Facilities
• Power Management
• Version Control

Appendixes

• Appendix A maps all the registers defined in the Cell Broadband
Engine Architecture to the real address space.

• Appendix B maps all the channels defined by the Cell Broadband
Engine Architecture in the real address space.

• Appendix C lists the special-purpose registers (SPRs) required by the
Cell Broadband Engine Architecture.

• Appendix D lists the memory flow controller (MFC) commands.
• Appendix E describes instructions and facilities that are extensions to

the PowerPC Architecture.
• Appendix F provides examples of access ordering.

Glossary Defines terms and acronyms used in this document

Title Version Date

PowerPC User Instruction Set Architecture, Book I 2.02 January 2005

PowerPC Virtual Environment Architecture, Book II 2.02 January 2005

PowerPC Operating Environment Architecture, Book III 2.02 January 2005

PowerPC Microprocessor Family: The Programming Environments Manual for 64-Bit Micro-
processors 3.0 July 2005

PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology Program-
ming Environments Manual 2.07c October 2006

Synergistic Processor Unit Instruction Set Architecture 1.2 January 2007

Document Division Description
Preface

Page 16 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Conventions and Notation

This document uses standard IBM notation, meaning that bits and bytes are numbered in ascending order
from left to right. Thus, for a 4-byte word, bit 0 is the most-significant bit, and bit 31 is the least-significant bit.

Notation for bit encoding is as follows:

• Hexadecimal values are preceded by x and enclosed in single quotation marks. For example: x‘0A00’.
• Binary values in sentences appear in single quotation marks. For example: ‘1010’.

This document uses the following software documentation conventions:

1. Command or instruction names are written in bold type. For example: put, get, rdch, wrch, and rchcnt.

2. Variables are written in italic type. Required parameters are enclosed in angle brackets. Optional param-
eters are enclosed in brackets. For example: get<f,b>[s].

This document uses the following symbols:

M
S

b

LS
b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

& bitwise AND

| bitwise OR

% modulus

= equal to

! = not equal to

≥ greater than or equal to

≤ less than or equal to

x >> y shift to the right; for example, 6 >> 2 = 1; least-significant y bits are dropped

x << y shift to the left; for example, 3 << 2 = 12; least-significant y bits are replaced zeros
Version 1.02
October 11, 2007

Preface

Page 17 of 358

Cell Broadband Engine Architecture
References to Registers, Fields, and Bits

Registers are referred to by their full name or by their short name (also called the register mnemonic). Fields
are referred to by their field name or by their bit position. The following table describes how registers, fields,
and bit ranges are referred to in this document and provides examples.

Endian Order

The PowerPC Architecture supports both big-endian and little-endian byte-ordering modes. Book I of the
PowerPC Architecture describes these modes. For more information about big-endian and little-endian byte
ordering, see the following sections in that book:

• Big Endian Mapping
• Little Endian Mapping

The CBEA supports only big-endian byte ordering. Therefore, PowerPC® Processor Elements (PPEs) in a
CBEA-compliant implementation are not required to support the little-endian byte-ordering mode as defined
in the PowerPC Architecture. Synergistic processor units (SPUs) do not implement the optional little-endian
byte-ordering mode. The PowerPC Processor Element (PPE) structure mapping is identical to that used for
the SPUs in a CBEA-compliant system.

Because the CBEA supports only big-endian byte ordering, the memory flow controller (MFC) direct memory
access (DMA) command and control registers do not implement the optional little-endian byte-ordering mode.
The DMA data transfers themselves are simply byte moves, without regard to the numerical significance of
any byte. Thus, the big-endian or little-endian issue becomes irrelevant to the actual movement of a block of
data. The byte-order mapping only becomes significant when data is fetched or interpreted, for example by a
processor, or by an MFC.

Type of Reference Format Example

Reference to a specific register and a
specific field using the register short
name and the field name

Register_Short_Name[Field_Name] MSR[R]

Reference to a field using the
field name [Field_Name] [R]

Reference to a specific register and to
multiple fields using the register short
name and the field names

Register_Short_Name[Field_Name1, Field_Name2] MSR[FE0, FE1]

Reference to a specific register and to
multiple fields using the register short
name and the bit positions.

Register_Short_Name[Bit_Number, Bit_Number] MSR[52, 55]

Reference to a specific register and to a
field using the register short name and
the bit position or the bit range.

Register_Short_Name[Bit_Number] MSR[52]

Register_Short_Name[Starting_Bit_Number:Ending_Bit_Number] MSR[39:44]

A field name followed by an equal sign
(=) and a value indicates the value for
that field.

Register_Short_Name[Field_Name]=n1 MSR[FE0]=‘1’
MSR[FE]=x‘1’

Register_Short_Name[Bit_Number]=n1 MSR[52]=‘0’
MSR[52]=x‘0’

Register_Short_Name[Starting_Bit_Number:Ending_Bit_Number]=n1 MSR[39:43]=‘10010’
MSR[39:43]=x‘11’

1. Where n is the binary or hexadecimal value for the field or bits specified in the brackets.
Preface

Page 18 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Revision Log

Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the
margin indicate that the adjacent text was significantly modified from the previous release of this document.

Revision Date Version Contents of Modification

October 11, 2007 1.02

Second revision (1.02).
• Changed “physical address space” to “real address space” (see Document Organization on

page 15, Appendix B SPU Channel Map on page 305, and Glossary on page 329).
• Added Appendix E to the document organization table (see Document Organization on page 15).
• Updated the list of documents related to the CBEA (see Related Publications on page 16).
• Corrected a sentence indicating that the vector/SIMD multimedia extension unit is required in the

PPE of a CBEA-compliant system; it is optional (see Section 1.1.1 PowerPC Processor Element
on page 29).

• Removed a redundant sentence from a programming note (see Section 1.5 Reserved Fields and
Registers on page 32).

• Indicated that the preferred forms of the PPE instructions are defined in the PowerPC Architecture
(see Section 2.2.1 Preferred Forms on page 37).

• Listed the optional SPU instructions (see Section 2.2.3 Optional Forms on page 38).
• Changed “Synergistic Processor Element (SPU)” to “synergistic processor unit (SPU)” (see Sec-

tion 5 Synergistic Processor Unit on page 49).
• Changed “Synergistic Processor Element (SPE)” to “synergistic processor unit (SPU)” and “SPE”

to “SPU” (see Section 7 MFC Commands on page 55).
• Rewrote the descriptions of the “f” and “b” command modifiers (see Section 7 MFC Commands

on page 55).
• Indicated that 0 is a valid transfer size (see Table 7-6 Command Errors and Alignment Errors on

page 61).
• Reworded the description of get commands (see Section 7.5 Get Commands (Main Storage to

Local Storage) on page 64).
• Reworded the description of the get list (getl) command, indicating that the local storage address

(LSA) must start on a 16-byte boundary unless (instead of if) the transfer size of the first list ele-
ment is less than 16 bytes (see Section 7.5.3 Get List Command on page 64).

• Reworded the description of the put list (putl) command, indicating that the local storage address
(LSA) must start on a 16-byte boundary unless (instead of if) the transfer size of the first list ele-
ment is less than 16 bytes (see Section 7.6.3 Put List Command on page 66).

• Reworded the description of the get lock line and reserve (getllar) command (see Section 7.8.1
Get Lock Line and Reserve Command on page 70).

• Reworded an implementation note (see Section 7.9 MFC Synchronization Commands on
page 73).

• Clarified the order in which commands are performed when a barrier modifier is used (see Section
7.9 MFC Synchronization Commands on page 75).

• Reworded the description of the send signal command (sndsig) (see Section 7.9.4 Send Signal
Command on page 77).

• Changed “MFC Class ID Register” to “MFC class ID” (see Section 8.1.2 MFC Class ID Register
on page 82).

• Indicated that 0 is a valid transfer size and corrected a cross reference (see Section 8.1.4 MFC
Transfer Size Register on page 84).

• Added footnotes indicating that the effective address can be written using either one 64-bit store
or two 32-bit stores. However, 64-bit access to an address range that includes a 32-bit MMIO reg-
ister is generally not allowed unless explicitly specified (see Section 8.1.6 MFC Effective Address
High Register on page 86 and Section 8.1.7 MFC Effective Address Low Register on page 87).

• Expanded a footnote to indicate that 64-bit access to an address range that includes a 32-bit
MMIO register is generally not allowed unless explicitly specified (see Section 8.2 MFC Proxy
Command Issue Sequence on page 88).

• Corrected a cross reference (see Section 8.3 MFC Proxy Command Queue Status and Control
Registers on page 89).

• Revised the description of the MFC Command Status Register (see Section 8.3.1 MFC Command
Status Register on page 90)
Version 1.02
October 11, 2007

Revision Log

Page 19 of 358

Cell Broadband Engine Architecture
October 11, 2007
(continued)

1.02

• Removed an incorrect statement about the MFC proxy command and expanded the description of
the proxy tag-group completion facility (see Section 8.4 Proxy Tag-Group Completion Facility on
page 92).

• Added a note indicating that a store operation to the SPU_RunCntl Register is a context synchro-
nizing operation (see Section 8.5.1 SPU Run Control Register on page 96).

• Explained that the contents of the signal notification registers are reset to zero when the SPU
reads the value of the corresponding channels (see Section 8.7.1 SPU Signal Notification 1 Reg-
ister on page 106 and Section 8.7.2 SPU Signal Notification 2 Register on page 107).

• Reworded the description of the MFC Multisource Synchronization Register to indicate that the
MFC Write Multisource Synchronization Request Channel is also part of the MFC multisource
synchronization facility. Where the term “MFC multisource synchronization facility” was incorrectly
used, changed it to “MFC Multisource Synchronization Register” (see Section 8.8.1 MFC Multi-
source Synchronization Register on page 109).

• Reworded the description of the MFC Command Opcode Channel (see Section 9.1.1 MFC Com-
mand Opcode Channel on page 117).

• Changed “proxy” to “SPU” and “MFC Class ID Channel” to “MFC class ID” (see Section 9.1.2
MFC Class ID Channel on page 118).

• Indicated the type of interrupt generated if the MFC command tag identification parameter is not
valid (see Section 9.1.3 MFC Command Tag Identification Channel on page 119).

• Corrected a cross reference and changed the programming note associated with the MFC Trans-
fer Size or List Size Channel (see Section 9.1.4 MFC Transfer Size or List Size Channel on
page 120).

• Changed “MFC State Register” to “MFC State Register One” and “MFC_SR” to “MFC_SR1” (see
Section 9.1.6 MFC Effective Address Low or List Address Channel on page 122 and Section 9.1.7
MFC Effective Address High Channel on page 124).

• Expanded the description of the MFC tag-group status channels (see Section 9.3 MFC Tag-Group
Status Channels on page 126).

• Modified the procedure for using the SPU event facility (see Section 9.3.2 Determining Command
Completion on page 129).

• Completed a sentence (see Section 9.3.5 MFC Write Tag Status Update Request Channel on
page 132).

• Expanded the description of the MFC Read Tag-Group Status Channel (see Section 9.3.6 MFC
Read Tag-Group Status Channel on page 133).

• Provided a less restrictive description of successive decrementer count reads (see Section 9.7.2
SPU Read Decrementer Channel on page 146).

• Added a programming note explaining how to avoid waiting on an event indefinitely when using
the SPU event facility (see Section 9.11 SPU Event Facility on page 150).

• Included a reference to Figure 9-1 in the implementation note associated with the SPU Read
Event Status Channel and corrected incorrect cross references (see Section 9.11.1 SPU Read
Event Status Channel on page 156).

• Changed “the count is set to 1” to “the count is incremented” in the description of the MFC SPU
command queue available event (see Section 9.12.3 MFC SPU Command Queue Available Event
on page 165).

• Reworded the description of the lock line reservation lost event, changing “cache line” to “reserva-
tion granule.”

• Added a programming note explaining how to avoid or handle a situation where a lock line reser-
vation lost event is not presented (see Section 9.12.10 Lock Line Reservation Lost Event on
page 170).

• Corrected a bit name (see Section 9.12.11 Privileged Attention Event on page 172).
• Expanded the description of storage access ordering (see Section 10 Storage Access Ordering

on page 175).
• Specified that “A” is a set of main storage accesses in the example illustrating PPU execution of a

sync or eieio instruction (see Section 10.2 Main Storage Domain Access Ordering on page 178).
• Changed the description of MFC overlapped accesses to be consistent with Section 3.2.1.2 Local

Storage Access Exceptions on page 42 and changed “address” to “access” (see Section 10.6
MFC Overlapped Accesses on page 180).

Revision Date Version Contents of Modification
Revision Log

Page 20 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
October 11, 2007
(continued)

1.02

• Changed “hypervisor mode (HV = ‘1’) and problem mode (PR = ‘0’)” to “hypervisor mode (HV = ‘1’
and PR = ‘0’)” (see Section 12.1 Privileged Mode Facility Organization on page 189).

• Removed a phrase indicating that certain extensions to the PowerPC Architecture are required in
a CBEA-compliant system (see Section 13.3 Extensions to the PowerPC Architecture on
page 197).

• Added footnotes indicating that 64-bit access to an address range that includes a 32-bit MMIO
register is generally not allowed unless explicitly specified (see Section 14.2.3 SLB Effective Seg-
ment ID Register on page 202, Section 14.2.4 SLB Virtual Segment ID Register on page 203,
Section 14.2.5 SLB Invalidate Entry Register on page 205, and Section 14.2.6 SLB Invalidate All
Register on page 206).

• Rewrote an implementation note (see Section 14.2.6 SLB Invalidate All Register on page 206).
• Changed the address offset of the TLB Virtual Page Number Register from x‘3B5’ to x‘3B4’;

Changed the address offset of the TLB Real Page Number Register from x‘3B4’ to x‘3B5’ (see
Section 14.3.4 TLB Virtual Page Number Register on page 211, Section 14.3.5 TLB Real Page
Number Register on page 212, and Table C-1 PPE Special Purpose Register Map on page 309).

• Corrected the description of TLB_RPN[LP] (see Section 14.3.5 TLB Real Page Number Register
on page 212).

• Corrected the TLB Invalidate Entry Register (see Section 14.3.6 TLB Invalidate Entry Register on
page 214).

• Corrected the size of the boundary between storage that is considered well behaved and storage
that is not (see Section 14.4.1 PPE Real-Mode Storage Control Facility on page 217 and Section
14.4.2 MFC Real-Mode Address Boundary Register on page 218).

• Corrected the base address offset of MFC_RMAB (see Section 14.4.2 MFC Real-Mode Address
Boundary Register on page 218).

• Changed “Local Storage Read bit (Lp)” to “Local Storage Put bit (Lp)” and provided names for the
MFC_ACCR bits; revised the description of the Lp bit; removed an incorrect cross reference (see
Section 15.6 MFC Address Compare Control Register on page 227).

• Changed “PTE address compare” to “effective address compare” in several places (see Section
15.6 MFC Address Compare Control Register on page 227 and Section 15.10 MFC Control Reg-
ister on page 233).

• Specified the order of precedence in the equations associated with the MFC_LSACR (see Section
15.7.1 MFC Local Storage Address Compare Register on page 229).

• Changed “SPU_Trapped interrupt” to “SPU halted interrupt.” Indicated that SPU_Status[IS] equals
‘1’ when the SPU is operating in isolation mode. Added a note to SPU_PrivCntl[A] (see Section
16.1 SPU Privileged Control Register on page 239).

• Corrected several cross references (see Section 19.2.1 RMT Index Register on page 257 and
Section 19.2.2 RMT Data Register on page 258).

• Changed “thread number” to “PPU thread number” (see Section 21.3 Internal Interrupt Controller
Registers on page 263).

• Changed a “less than” sign to a “less than or equal to” sign (see Table 21-1 Internal Interrupt Con-
troller Memory Map on page 263).

• Indicated that the H bit in the SPU Status Register is set to ‘1’ and the H bit in the Class 2 Interrupt
Status Register is set to ‘1’ if a single instruction step completes (see Section 21.5.3 Class 2 Inter-
rupts on page 274).

• Indicated that a pulse condition sets MFC class 1 interrupt status bits 60 and 61 and provided
cross references to figures illustrating the interrupt generation process (see Section 21.7 MFC
Interrupt Status Registers on page 279).

• Indicated that read access to the Processor Version Register “is” (rather than “should be”) privi-
leged (see Section 23.1 CBEA-Compliant Processor Version Register on page 287).

• Changed “processors” to “SPUs” (see Section 23.3 SPU Version Register on page 289).
• Changed “processors” to “MFCs” (see Section 23.4 MFC Version Register on page 290).
• Corrected the list of memory map sections (see Appendix A Memory Maps on page 293).
• Made several minor changes to Table A-1 CBEA-Compliant Processor Memory Map on page 294.
• Corrected the address offset of the reserved portion of the control and configuration area (see

Table A-3 SPE Privilege 1 Memory Map on page 298).

Revision Date Version Contents of Modification
Version 1.02
October 11, 2007

Revision Log

Page 21 of 358

Cell Broadband Engine Architecture
October 11, 2007
(continued)

1.02

• Corrected the address offset of the reserved portion of the RMT area (see Table A-5 PPE Privi-
lege 1 Memory Map on page 302).

• Changed “thread number” to “PPU thread number” (see Section A.5 Internal Interrupt Controller
Memory Map on page 303).

• Changed a column heading in Table C-1 PPE Special Purpose Register Map on page 309.
• Revised Appendix E.2 Mediated External Exception Extension (optional) on page 316.
• Updated the examples of access ordering to reflect the ordering rules (see Appendix F Examples

of Access Ordering on page 321).
• Explained when the MFC local storage address (LSA) access is complete and corrected several

cross references (see Example 7 on page 323 and Example 8 on page 323).
• Changed put to get in step 3 of MFC (1) (see Example 14 on page 325).
• Added the following definition: barrier; modified the following definitions: DMA queue, EIB, error

correction code, fence, vector/SIMD multimedia extension, virtual address (see Glossary on
page 329).

• Changed SPU_IDR to SPU_ID throughout to be consistent with the Cell Broadband Engine Reg-
isters document.

• Made other minor changes for clarity and consistency.

October 3, 2006 1.01

First revision (1.01).
• Reworded the description of the synergistic processor unit (see Section 1.1.2 on page 29).
• Reworded the description of the memory flow controller (see Section 1.1.3 on page 29).
• Reworded the description of local storage addressing (see Section 1.2.1 on page 30).
• Added optional forms to the list of forms available for defined instructions or commands (see

Section 2.1.1 on page 36).
• Reworded the description of the illegal class of instructions and commands (see Section 2.1.2 on

page 37).
• Indicated that there are no preferred forms of the defined instructions and commands (see

Section 2.2.1 on page 37).
• Corrected a reference in Section 2.2.2 Invalid Forms on page 38.
• Revised the list of exceptions caused directly by the execution of an instruction (see Section 2.3

on page 38).
• Added an item to the list of accesses that are always atomic (see Section 3.3 Single-Copy Atom-

icity on page 42).
• Removed an inaccurate note in Section 3.4 Cache Models on page 43.
• Removed the phrase “with the MFC” from the description of the PowerPC Processor Element

(PPE) (see Section 4 on page 47).
• Removed vector/SIMD multimedia extension from the list of optional PowerPC Architecture,

Book I instructions that are required by the CBEA. Expanded the description of the fres and
frsqte instructions (see Section 4.1.1 Optional Features in PowerPC Architecture, Book I
(Required for CBEA) on page 47).

• Revised the description of the optional version of the dcbt instruction (see Section 4.1.3 Optional
Features in PowerPC Architecture, Book II (Required for CBEA) on page 48).

• Moved the list of requests for extensions to the PowerPC Architecture from Appendix E to
Section 4.1.5 on page 48 and to Section 13.3 on page 197.

• Reworded the description of memory flow controller (MFC) commands (see Section 7 on
page 55).

• Included a loop in the code example illustrating a list command (see the notes after Table 7-1 on
page 56).

• Reworded the description of defined commands (see Section 7.1.1 on page 57).
• Reworded the description of the mfceieio command (see Table 7-4 MFC Synchronization Com-

mands on page 60).
• Reworded the description of illegal commands (see Section 7.1.2 on page 60).
• Corrected the range of the MFC command opcode parameter for reserved commands (see Sec-

tion 7.1.3 Reserved Commands on page 61).
• Added a table summarizing the command and alignment errors that the CBEA identifies (see

Table 7-6 on page 61).

Revision Date Version Contents of Modification
Revision Log

Page 22 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
October 3, 2006
(continued)

1.01

• Reworded the description of MFC command parameters. Included the missing list address (LA)
parameter. Added cross references to the MFC SPU Command Parameter Channels. (See Sec-
tion 7.3 MFC Command Parameters on page 62.)

• Reworded the description of list commands and list elements (see Section 7.4 on page 63).
• Reworded the description of the get list command (see Section 7.5.3 on page 64).
• Reworded the description of put commands (see Section 7.6 on page 65).
• Reworded the descriptions of storage control commands and added implementation notes (see

Section 7.7 on page 67).
• Revised the description of MFC atomic update commands, indicating that the SPE and PPE must

have the same granule size (see Section 7.8 MFC Atomic Update Commands on page 70).
• Revised the description of the getllar command. Added a programming note that explains the

need to avoid looping on getllar commands (see Section 7.8.1 Get Lock Line and Reserve Com-
mand on page 70).

• Expanded the description of the putllc command (see Section 7.8.2 Put Lock Line Conditional
Command on page 71).

• Revised the description of MFC synchronization commands (see Section 7.9 MFC Synchroniza-
tion Commands on page 73).

• Corrected the description of the mfcsync command (see Section 7.9.1 on page 75).
• Corrected the description of the mfceieio command (see Section 7.9.2 on page 76).
• Added an introduction to Table 8-1 SPE Problem-State Memory Map on page 79.
• Changed the title of Section 8.1 on page 80 from MFC Command Parameter Registers to MFC

Proxy Command Parameter Registers.
• Added a note to the description of the MFC Command Opcode Register (see Section 8.1.1 on

page 81).
• Revised the description of the MFC Class ID Register (see Section 8.1.2 on page 82).
• Clarified the note associated with the MFC Command Tag Register (see Section 8.1.3 on

page 83).
• Changed the programming note associated with the MFC Transfer Size Register (see

Section 8.1.4 on page 84).
• Changed the programming note associated with the MFC Local Storage Address Register (see

Section 8.1.5 on page 85).
• Changed the description of the MFC Effective Address High Register (see Section 8.1.6 on

page 86).
• Changed the description of the MFC Effective Address Low Register and the programming note

associated with it (see Section 8.1.7 on page 87).
• Added a footnote to the MFC proxy command issue sequence and revised the implementation

note associated with the sequence (see Section 8.2 on page 88).
• Changed the description of the proxy tag-group completion facility. Changed the value written to

the Proxy Tag-Group Query Type Register to request a tag-group query from ‘11’ to ‘10’ (see
Section 8.4 on page 92).

• Changed SPU_NPC[30] from not implemented (NI) to Reserved (see Section 8.5.3 SPU Next
Program Counter Register on page 99).

• Reworded the description of the SPU signal notification facility (see Section 8.7 on page 105).
• Revised the description of the MFC multisource synchronization facility (see Section 8.8 on

page 108).
• Reworded the description of the MFC Multisource Synchronization Register and the associated

examples (see Section 8.8.1 on page 109).
• Reworded the general description of SPU channels (see Section 9 on page 113).
• Reworded the general description of MFC command parameter channels (see Section 9.1 on

page 116).
• Indicated that the MFC Command Opcode Channel is blocking (see Section 9.1 MFC SPU Com-

mand Parameter Channels on page 116 and Section 9.2 MFC SPU Command Issue Sequence
on page 125).

• Revised the description of the MFC Class ID Channel (see Section 9.1.2 on page 118).

Revision Date Version Contents of Modification
Version 1.02
October 11, 2007

Revision Log

Page 23 of 358

Cell Broadband Engine Architecture
October 3, 2006
(continued) 1.01

• Added 16 bits to the MFC Command Tag Identification Channel (see Section 9.1.3 on page 119)
and to the MFC Transfer Size or List Size Channel (see Section 9.1.4 on page 120).

• Expanded the programming note associated with the MFC Local Storage Address Channel (see
Section 9.1.5 on page 121).

• Reworded the description of the MFC Effective Address Low or List Address Channel (see
Section 9.1.6 on page 122).

• Reworded the description of the MFC Effective Address High Channel (see Section 9.1.7 on
page 124).

• Reworded the description of the MFC SPU command issue sequence (see Section 9.2 on
page 125).

• Reworded the description of the MFC tag-group status channels (see Section 9.3 on page 126).
• Modified step 4 of the basic procedure for waiting for a list command to reach a list element with

the stall-and-notify flag set (see Section 9.3.2 on page 128).
• Reworded the description of the MFC Write Tag-Group Query Mask Channel (see Section 9.3.3

on page 129).
• Reworded the description of the MFC Read Tag-Group Query Mask Channel (see Section 9.3.4

on page 131).
• Reworded the description of the MFC Write Tag Status Update Request Channel (see

Section 9.3.5 on page 132).
• Reworded the description of the MFC Read List Stall-and-Notify Tag Status Channel and revised

the associated implementation notes (see Section 9.3.7 on page 135).
• Revised the description of the SPU Read Machine Status Channel (see Section 9.8 on page 147).
• Changed SPU_RdEventStat[27] to indicate that the SPU inbound mailbox event is triggered when

the SPU Read Inbound Mailbox Channel transitions from a zero to a nonzero value. Added the
lock line reservation lost event to the list of events hardware detects (see Section 9.11.1 on
page 153).

• Reworded step 6 of the procedure to handle an MFC list command stall-and-notify event (see
Section 9.12.2 on page 163).

• Revised the description of a multisource synchronization event (see Section 9.12.12 on
page 172).

• Redefined “main storage” (see Section 10.1 on page 177).
• Reworded the description of main storage domain access ordering (see Section 10.2 on

page 177).
• Added Section 10.9 Storage Ordering of I/O Accesses on page 181.
• Indicated that a load function must be initiated to change an SPU from an SPU nonisolated execu-

tion environment to an SPU isolated execution environment (see Section 11.1 on page 183).
• Reworded the general description of the privileged mode facility organization (see Section 12.1 on

page 189).
• Corrected the offset of the reserved section of the Synergistic Processor Element (SPE) privilege

1 control and configuration area (see Table 12-1 on page 190).
• Added Section 13.3 Extensions to the PowerPC Architecture on page 197.
• Reworded the description of storage addressing (see Section 14 on page 199).
• Integrated a subsection called “SLB Management” into the preceding paragraph (see

Section 14.2 on page 200).
• Changed the range of SLB_VSID[LP] from 57-59 to 58 -59. Corrected the descriptions of the

SLB_VSID[LP] and SLB_VSID[L] fields. (See Section 14.2.4 on page 203.)
• Corrected the description of the SLB Invalidate All Register to indicate that a write to the least-sig-

nificant word causes all entries, not a single entry, to be invalidated (see Section 14.2.6 on
page 206).

• Revised the description of TLB management and added a programming note and an implementa-
tion note (see Section 14.3 on page 207).

• Reworded the description of the TLB Virtual Page Number Register and the associated note (see
Section 14.3.4 on page 211).

• Corrected the meaning of the first value in TLB_RPN[LP] (see Section 14.3.5 on page 212).

Revision Date Version Contents of Modification
Revision Log

Page 24 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
October 3, 2006
(continued) 1.01

• Corrected the meanings of the values in TLB_Invalidate_Entry[LP] (see Section 14.3.6 on
page 214).

• Revised the programming note associated with MFC_SR1[D] (see Section 15.1 on page 221).
• Indicated that the MFC command queue status changes to MFC command queue operation sus-

pended when all outstanding DMA transfers are complete (see Section 15.10 on page 233).
• Corrected the description of the SPU Channel Data Register to indicate that the external event

mask has no effect on the data read when using the SPU channel access facility, not when using
a read channel (rdch) instruction (see Section 16.3.2 on page 243).

• Corrected the note associated with the SPU Channel Count Register to indicate that the channel
count for the MFC Command Opcode Channel must be initialized to an implementation-depen-
dent maximum value, not to 16 (see Section 16.3.3 on page 244).

• Reworded the description of SPE Context Save and Restore (see Section 17 on page 247).
• Reworded the general description of the PPE address range facility (see Section 18 on

page 249).
• Removed implementation-specific information from the description of resource allocation man-

agement (see Section 20 on page 259).
• Reworded the description of interrupt facilities (see Section 21 on page 261).
• Reworded the description of interrupt classifications (see Section 21.1 on page 261).
• Reworded the description of interrupt presentation (see Section 21.2 on page 262).
• Modified the term “PPE” with the adjective “logical” in the description of the Internal Interrupt Con-

troller Registers (see Section 21.3 on page 263).
• Revised the description of the Interrupt Pending Port Registers and of the Class and ISRC fields

in those registers (see Section 21.3.1 on page 263).
• Corrected the bit range for INT_Generation[Priority] (see Section 21.3.2 on page 267).
• Changed the description of the SPU Halt Instruction Trap or Single Instruction Step Complete

interrupt type (see Table 21-3 on page 269).
• Changed the description of class 1 interrupts (see Section 21.5.2 on page 272) and class 2 inter-

rupts (see Section 21.5.3 on page 274).
• Reworded an implementation note in the description of MFC Interrupt Status Registers (see

Section 21.7 on page 279).
• Corrected the meanings of the INT_Stat_class1[LP, LG] values (see Section 21.7.2 on page 281).
• Changed the title of Table A-1 on page 294. Corrected various other minor errors in that table.
• Corrected the description of the SPU_Sig_Notify_2 register (see Table A-2 on page 296).
• Changed a “less than” sign to a “less than or equal to” sign (see Table A-6 on page 303).
• Reworded the description of the mfceieio command (see Table D-4 on page 314).
• Added Table D-5 MFC Atomic Commands on page 314.
• Completely revised Appendix E Extensions to the PowerPC Architecture on page 315. Added

Appendix E.1 Software Management of TLBs (optional) on page 315, Appendix E.2 Mediated
External Exception Extension (optional) on page 316, Appendix E.3 Multiple Concurrent Large
Pages (optional) on page 318, Appendix E.4 Defined Behavior for Inaccessible SPRs on
page 319, and Appendix E.5 Vector/SIMD Multimedia Extension (optional) on page 319. Indicated
which extensions are required and which are optional.

• Updated the Glossary (see page 329).
• Corrected various problems in the index (page 341).
• Changed SPU_OutIntrMbox to SPU_Out_Intr_Mbox throughout.

August 8, 2005 1.0 Initial release

Revision Date Version Contents of Modification
Version 1.02
October 11, 2007

Revision Log

Page 25 of 358

Cell Broadband Engine Architecture
Revision Log

Page 26 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
1. Introduction to Cell Broadband Engine Architecture

The Cell Broadband Engine Architecture (CBEA) defines a processor structure directed toward distributed
processing. The intent is to allow implementation of a wide range of single or multiple processor and memory
configurations, in order to optimally address many different systems and application requirements.

The CBEA is divided into two environments: the user mode environment (UME) and the privileged mode envi-
ronment (PME). The UME describes the commands and facilities available to an application programmer; the
PME should only be used by software in privileged mode, such as operating systems.

This document does not cover all aspects of the CBEA. The PowerPC Architecture documentation defines
instructions and facilities for the PowerPC® Processor Element (PPE). The Synergistic Processor Unit
Instruction Set Architecture document defines instructions and facilities for the synergistic processor unit
(SPU). This document focuses on the infrastructure around the computational, data movement, communica-
tion, synchronization, and resource management components. Together, these three documents are required
for a complete definition of the CBEA.

The PowerPC Architecture™ is a standalone processor architecture. Therefore, this document outlines the
optional PowerPC features and extensions required for CBEA compliance. The Synergistic Processor Unit
Instruction Set Architecture focuses on the instruction set for the SPU component. The SPU is detailed in a
separate document so that its instruction set can be used in non-CBEA-compliant implementations and in
other architectures.

1.1 Organization of a CBEA-Compliant Processor

Physically, a CBEA-compliant processor can consist of a single chip, a multichip module (or modules), or
multiple single-chip modules on a system board or other second-level package. The design depends on the
technology used, and on the cost and performance characteristics of the intended design point.

Logically, the CBEA defines four separate types of functional components: the PowerPC Processor Element
(PPE), the synergistic processor unit (SPU), the memory flow controller (MFC), and the internal interrupt
controller (IIC). The computational units in the CBEA-compliant processor are the PPEs and the SPUs. Each
SPU must have a dedicated local storage, a dedicated MFC with its associated memory management unit
(MMU), and a replacement management table (RMT). The combination of these components is called a
Synergistic Processor Element (SPE).

Figure 1-1 on page 28 illustrates a CBEA-compliant processor in which a group of SPEs shares a single SL1
cache. (An SL1 cache is a first-level cache for direct memory access (DMA) transfers between local storage
and main storage.) A group of PPEs shares a single second-level (L2) cache. (While Figure 1-1 shows
caches for an SPE and a PPE, they are considered optional in the CBEA.) The illustration also shows two
controllers that are typically found in a processor: a memory interface controller (MIC) and a bus interface
controller (BIC). An element interconnect bus (EIB) connects the various units within the processor. The
requirements for the MIC, BIC, and EIB vary widely between implementations. Thus, the definition for these
units is beyond the scope of the CBEA.

A processor can include multiple groups of PPEs (PPE groups) and multiple groups of SPEs (SPE groups).
Hardware resources can be shared between units within a group. However, the SPEs and PPEs must appear
to software as independent elements.
Version 1.02
October 11, 2007

Introduction to Cell Broadband Engine Architecture

Page 27 of 358

Cell Broadband Engine Architecture
In summary, a CBEA-compliant system must include the components listed below. Each of these compo-
nents must follow the definitions of the instructions and facilities provided in the this document, in PowerPC
Architecture, Books I - III, and in the Synergistic Processor Unit Instruction Set Architecture document.

• One or more PPEs
• One or more SPEs, which are the combination of an SPU, a local storage area, an MFC, and an RMT
• One IIC
• One EIB for connecting units within the processor

Figure 1-1. CBEA-Compliant Processor System

SPU0 SPUg

SL1

PPU0

L2

BIU

Element Interconnect Bus (EIB)

SPE Group 0 (SG_0) SPE Group n (SG_n) PPE Group 0 (PG_0) PPE Group p (PG_p)

MFC MFC

LS

MMU
RMT

SPE_0 SPE_g

MMU
RMT

BIU

RMT

SPU0 SPUg

SL1

BMT

MFC MFC

LS

MMU
RMT

SPE_0 SPE_g

MMU
RMT

BIU

RMT
RMT

RMT

L1

PPUg

RMT

L1

PPU0

L2

BIU

RMT

RMT

L1

PPUg

RMT

L1

BIC Bus Interface Controller MMU Memory Management Unit

BIU Bus Interface Unit PPE PowerPC Processor Element

IIC Internal Interrupt Controller PPU PowerPC processor unit

L1 Memory Cache Internal to the CPU RMT Replacement-Management Table

L2 Memory Cache External to the CPU SL1 First-Level Cache

LS Local Storage SPE Synergistic Processor Element

MFC Memory Flow Controller SPU Synergistic Processor Unit

MIC Memory Interface Controller

Bus Interface Controller (BIC) Internal Interrupt Controller (IIC)

I/O

Memory Interface Controller (MIC)

Memory

LS LS

CBEA-Compliant Processor
Introduction to Cell Broadband Engine Architecture

Page 28 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
1.1.1 PowerPC Processor Element

A CBEA-compliant processor includes one or more PPEs. The PPEs are 64-bit PowerPC processor units
(PPUs) with associated caches that conform to PowerPC Architecture, Books I - III. For more detail on
compatibility issues, see Section 4 PowerPC Processor Element beginning on page 47. A CBEA-compliant
system can include a vector/SIMD multimedia extension unit in a PPE (see Appendix E.5 Vector/SIMD Multi-
media Extension (optional) on page 319).

The PPEs are general-purpose processing units that can access system management resources (such as
the memory-protection tables, for example). Hardware resources defined in the CBEA are mapped explicitly
to the real address space seen by the PPEs. Therefore, any PPE can address any of these resources directly
by using an appropriate effective address value. A primary function of the PPEs is the management and allo-
cation of tasks for the SPEs in a system.

1.1.2 Synergistic Processor Unit

A CBEA-compliant processor includes one or more SPUs. The SPUs are less complex computational units
than PPEs because they do not perform any system management functions. They have a single instruction,
multiple data (SIMD) capability. They typically process data and initiate any required data transfers in order to
perform their allocated tasks.

The purpose of the SPU is to enable applications that require a higher computational unit density and can
effectively use the provided instruction set. Including one or more SPUs in a processor, managed by the
PPEs, allows for cost-effective processing over a wide range of applications.

The SPUs implement their own instruction set architecture. The main characteristics of this architecture are
described in Section 5 Synergistic Processor Unit beginning on page 49.

1.1.3 Memory Flow Controller

MFCs are essentially the data transfer engines. They provide the primary method for data transfer, protec-
tion, and synchronization between main storage and the associated local storage, or between the associated
local storage and another local storage (see Section 1.2 Storage Types on page 30 for an explanation of
storage types). An MFC command describes the transfer to be performed. A principal architectural objective
of the MFC is to perform these data transfer operations in as fast and as fair a manner as possible, thereby
maximizing the overall throughput of a CBEA-compliant processor.

Commands that transfer data are called MFC DMA commands. These commands are converted into DMA
transfers between the local storage domain and main storage domain. Each MFC can typically support
multiple DMA transfers at the same time and can maintain and process multiple MFC commands.

To accomplish this, the MFC maintains and processes queues of MFC commands. Each MFC provides one
queue for the associated SPU (MFC SPU command queue) and one queue for other processors and devices
(MFC proxy command queue). Logically, a set of MFC queues is always associated with each SPU in a
CBEA-compliant processor. However, some implementations of the architecture can share a single physical
MFC between multiple SPUs, such as an SPU group. In such cases, all the MFC facilities must appear to
software as independent for each SPU.

Each MFC DMA data transfer command request involves both a local storage address (LSA) and an effective
address. The local storage address can directly address only the local storage area of its associated SPU.
Version 1.02
October 11, 2007

Introduction to Cell Broadband Engine Architecture

Page 29 of 358

Cell Broadband Engine Architecture
The effective address has a more general application. It can refer to main storage, including all the SPU local
storage areas, if they are aliased into the real address space (that is, if MFC_SR1[D] is set to ‘1’). (See
Section 15.1 MFC State Register One beginning on page 221 for more information.)

The MMU in an MFC supports the storage addressing model described in PowerPC Architecture, Book III
and the extensions described in Section 14 Storage Addressing beginning on page 199.

An MFC provides two types of interfaces: one to the SPUs and another to all other processors and devices in
a processing group.

• SPU Channel: The SPUs use a channel interface to control the MFC. Code running on an SPU can only
access the MFC SPU command queue for that SPU.

• Memory-Mapped Register: Other processors and devices control the MFC by using memory-mapped
registers. It is possible for any processor or device in the system to control an MFC and to issue MFC
proxy command requests on behalf of the SPU.

The MFC also supports bandwidth reservation and data synchronization features.

1.1.4 Internal Interrupt Controller

The IIC manages the priority of the interrupts presented to the PPEs. The main purpose of the IIC is to allow
interrupts from other components in the processor to be handled without using the main system interrupt
controller. The IIC is really a second level controller. It handles all interrupts internal to a CBEA-compliant
processor or within a multiprocessor system of CBEA-compliant processors. The system interrupt controller
typically handles all interrupts external to the CBEA-compliant processor.

In a CBEA-compliant system, software must first check the IIC to determine if the interrupt was sourced from
an external system interrupt controller. The IIC is not intended to replace the main system interrupt controller,
which handles interrupts from all I/O devices.

1.2 Storage Types

There are two types of storage domains within the CBEA: the local storage domain and the main storage
domain. The local storage of the Synergistic Processor Elements (SPEs) exists in the local storage domain.
All other facilities and memory are in the main storage domain.

Local storage consists of one or more separate areas of memory storage, each one associated with a specific
SPU. Each SPU can only execute instructions (including data load and data store operations) from within its
own associated local storage domain. Therefore, any required data transfers to, or from, storage elsewhere in
a system must always be performed by issuing an MFC DMA command to transfer data between the local
storage domain of the individual SPU and the main storage domain, unless local storage aliasing is enabled.

1.2.1 Local Storage Addressing

An SPU program references its local storage domain by using a local storage address. Each local storage
area is also assigned a real address within the main storage domain. This is called being aliased into the
main storage domain. By setting MFC_SR1[D] to ‘1’, privileged software enables an SPE to decode the
address space. This lets the local storage be accessed from the main storage domain. With the local storage
alias enabled, privileged software can map a local storage area into the effective address space of an appli-
cation. This allows DMA transfers between the local storage of one SPU and the local storage of another
Introduction to Cell Broadband Engine Architecture

Page 30 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
SPU. Similarly, other processors or devices with access to the main storage domain can also directly access
a local storage area that has been aliased into the main storage domain. With the local storage alias enabled,
privileged software can map an effective address or I/O bus address to the real address in the main storage
domain corresponding to a local storage area.

Data transfers that use the local storage area aliased in the main storage domain should do so as caching
inhibited, because these accesses are not coherent with the SPU local storage accesses1 in the SPU local
storage domain. Aliasing the local storage areas into the real address space of the main storage domain
allows any other processors or devices that have access to the main storage area direct access to local
storage. However, because aliased local storage must be treated as noncacheable, transferring a large
amount of data using PPE load and store instructions can result in poor performance. Data transfers between
the local storage domain and the main storage domain should use the MFC DMA commands to avoid stalls.

1.2.2 Main Storage Addressing

The addressing of main storage in the CBEA is compatible with the addressing defined in the PowerPC Archi-
tecture. The CBEA builds upon the concepts of the PowerPC Architecture and extends them to the
addressing of main storage by the MFCs.

An application program executing in an SPU or in any other processor or device uses an effective address to
access main storage. The effective address is computed when a PPE performs a load, store, branch, or
cache instruction, and when it fetches the next sequential instruction. An SPU program must provide the
effective address as a parameter in an MFC command. The effective address is translated to a real address
according to the procedures described in the overview of address translation in PowerPC Architecture, Book
III. The real address is the location in main storage that is referenced by the translated effective address.

All PPEs, MFCs, and I/O devices in a system share main storage. All information held in this level of storage
is visible to all processors and devices in the system. This storage area can either be uniform in structure or
can be part of a hierarchical cache structure. Programs reference this level of storage by using an effective
address.

1.2.3 Main Storage Attributes

The main storage of a system typically includes both general-purpose and nonvolatile storage. It also
includes special-purpose hardware registers or arrays used for functions such as system configuration, data-
transfer synchronization, memory-mapped I/O, and I/O subsystems.

Table 1-1 lists the sizes of address spaces in main storage.

1. SPU load, store, or instruction fetch

Table 1-1. Sizes of Main Storage Address Spaces (Page 1 of 2)

Address Space Size Description

Real Address Space 2m bytes where m ≤ 62

Effective Address Space 264 bytes An effective address is translated to a virtual address using the segment lookaside buffer
(SLB).

Virtual Address Space 2n bytes
where 65 ≤ n ≤ 80
A virtual address is translated to a real address using the page table.

Note: The values of “m,” “n,” and “p” are implementation dependent.
Version 1.02
October 11, 2007

Introduction to Cell Broadband Engine Architecture

Page 31 of 358

Cell Broadband Engine Architecture
1.3 Cache Replacement Management Facility

The CBEA includes an optional facility for managing critical resources within the processor and system. The
resources targeted for management within the CBEA are the translation lookaside buffers (TLBs) and the
data and instruction caches. Implementation-dependent tables control management of these resources.
Tables for managing TLBs and caches are called replacement management tables (RMTs). These tables are
optional in the CBEA. However, it is strongly recommended that an implementation provide a table for each
critical resource that can be a bottleneck in the system.

An SPE group can also contain an optional cache hierarchy, the SL1 caches, which represent first level
caches for DMA transfers. The SL1 caches can also contain optional RMTs. Section 7.7 Storage Control
Commands beginning on page 67 describes the features and operation of the SL1 caches. Section 19 Cache
Replacement Management Facility beginning on page 255 describes the RMTs.

1.4 Instructions, Commands, and Facilities

Instructions define operations to be performed by a processing element. The PowerPC Architecture
describes the instructions supported for a PPE. The CBEA requires certain features and extensions that are
optional in the PowerPC Architecture. Section 4 PowerPC Processor Element beginning on page 47 and
Section 13 PowerPC Architecture, Book III Compatibility beginning on page 197 describe these features and
extensions. Section 5 Synergistic Processor Unit beginning on page 49 defines the version of the Synergistic
Processor Instruction Set Architecture supported by the CBEA.

Commands define operations to be performed by the MFC. Section 7 MFC Commands beginning on page 55
describes the supported commands.

The term facilities describes functionality accessed through the main storage domain by processors or
devices having such access, or by SPUs through the use of channel instructions. In some cases, a facility can
be accessed through a single main storage address or by a single SPU channel. Section 6.1 MFC Facilities
beginning on page 52 lists the facilities supported by the CBEA.

1.5 Reserved Fields and Registers

All reserved fields should be set to zero. MFC commands with reserved fields that are not set to zero are
considered invalid. For a description of the invalid instructions and invalid MFC forms, see Section 7 MFC
Commands beginning on page 55.

Real Page
(Base) 212 bytes

Virtual Page 2p bytes

where 12 ≤ p ≤ 28
Up to eight page sizes can be supported simultaneously. A small 4 KB (p = 12) page is
always supported. The number of large pages and their sizes are implementation depen-
dent.

Segment 228 bytes The number of virtual segments is 2(n - 28) where 65 ≤ n ≤ 80

Table 1-1. Sizes of Main Storage Address Spaces (Page 2 of 2)

Address Space Size Description

Note: The values of “m,” “n,” and “p” are implementation dependent.
Introduction to Cell Broadband Engine Architecture

Page 32 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
The handling of reserved bits in a specific instantiation of the CBEA is implementation dependent. For each
reserved bit, an implementation will either:

• Ignore the reserved bits on writes and return zeros for the reserved bits on reads; or
• Maintain the state of the reserved bits.

All reserved registers should be set to zero, unless otherwise indicated. An implementation must decode all
reserved registers for both reads and writes. The handling of reserved register values in a specific instantia-
tion of the CBEA is implementation dependent. For each reserved register, an implementation will take one of
the following actions:

• Ignore the value on writes and return zeros for reads of the register
• Maintain the state of the reserved register

Fields and registers that are currently defined as reserved can become defined in future versions of the
CBEA.

Programming Note:

Software must preserve the state of the reserved bits. To accomplish this in an implementation-independent
fashion, software should take the following steps:

• Initialize all reserved bits to zero.
• Alter only the defined bits by reading the register, modifying the required bits, and writing the new value

back to the register.

See the register definition for the proper method of handling reserved bits. Software should not use reserved
bits or reserved registers to maintain the software state for any purpose.

Implementation Note:

An implementation of the CBEA should never use reserved fields or registers for an implementation-depen-
dent purpose. All defined, reserved, and implementation-dependent registers must be decoded for both reads
and writes. Furthermore, the range of addresses for a given area in the memory map must be a multiple of at
least 4 KB (that is, the smallest page addresses). An implementation should consider the range to be a
multiple of a larger supported page size to minimize the number of page table entries required to map the
address range. See Appendix A Memory Maps on page 293 for more details.

1.6 Implementation-Dependent Fields and Registers

The CBEA provides implementation-dependent fields and registers. These fields and registers are intended
for implementation-dependent purposes and will not be defined by future versions of the CBEA. Unused
fields and registers should be handled in the same manner as reserved fields and registers.

For descriptions of the implementation-dependent fields and registers, see the specific implementation docu-
mentation.
Version 1.02
October 11, 2007

Introduction to Cell Broadband Engine Architecture

Page 33 of 358

Cell Broadband Engine Architecture
Introduction to Cell Broadband Engine Architecture

Page 34 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
User Mode Environment
The User Mode Environment (UME) section defines the instruction set, base command set, storage models,
and facilities available to an application programmer. It also discusses compatibility with the PowerPC Archi-
tecture. In addition to an overview, this section includes:

• Section 3 Storage Models beginning on page 41
• Section 4 PowerPC Processor Element beginning on page 47
• Section 5 Synergistic Processor Unit beginning on page 49
• Section 6 Memory Flow Controller beginning on page 51
• Section 7 MFC Commands beginning on page 55
• Section 8 Problem-State Memory-Mapped Registers beginning on page 79
• Section 9 Synergistic Processor Unit Channels beginning on page 113
• Section 10 Storage Access Ordering beginning on page 175
• Section 11 SPU Isolation Facility beginning on page 183
Version 1.02
October 11, 2007

User Mode Environment

Page 35 of 358

User Mode Environment

Cell Broadband Engine Architecture
2. Overview

Introduction to Cell Broadband Engine Architecture on page 27 reviews the structure of a Cell Broadband
Engine Architecture (CBEA)-compliant system. Become familiar that section and Figure 1-1 CBEA-Compliant
Processor System on page 28 to gain an understanding of the following topics:

• PowerPC Processor Element (PPE)

• Synergistic processor unit (SPU)

• Memory flow controller (MFC)

• System local storage and main storage memory arrays, their associated cache structures, and their orga-
nization within an overall system context

The instructions and facilities provided by a PPE are defined in PowerPC Architecture, Books I-III. The
instructions and facilities provided by an SPU are defined in the Synergistic Processor Unit Instruction Set
Architecture document. For a more complete understanding of the CBEA, the reader should also become
familiar with these documents.

2.1 Instruction and Command Classes

Both the PPE and the SPU components execute programs that consist of instructions that specify the type of
actions they are to perform. The MFCs execute commands that specify the type of data copying or movement
they are to perform. Thus, there are generally two sets of instructions (PPE and SPU) and one set of
commands (MFC). These instructions and commands can be categorized into three classes.

• Defined
• Illegal
• Reserved

The class of an instruction or command is determined by examining the operation code (opcode) and, if it
exists, the extended opcode. If an instruction opcode, or a combination of opcode and extended opcode, is
not that of a defined or reserved instruction, then the instruction is illegal. If the command type is not that of a
defined or reserved command, then the command is illegal.

A given instruction or command is in the same class for all implementations compliant with this release of the
CBEA. In future versions of the CBEA, instructions or commands that are currently illegal can become
defined (by being added to the architecture) or reserved (by being assigned to a special-purpose operation).
Similarly, some instructions or commands that are currently reserved can become defined in a subsequent
architecture release.

2.1.1 Defined Class

This class of instructions and commands contains all instructions and commands defined in this release of
the CBEA. In general, defined instructions and commands are guaranteed to be provided in all implementa-
tions. The only deviations permitted are instructions or commands that are specifically identified in their
descriptions as optional. Defined instructions or commands can have preferred forms, or invalid forms, or
optional forms. Section 2.2 Forms of Defined Instructions and Commands on page 37 describes these forms.
Overview

Page 36 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
2.1.2 Illegal Class

Illegal instructions and commands are available for use in future extensions of the CBEA. This means that a
future release of the CBEA might assign any of these opcodes to new instructions or functions. PowerPC
Architecture, Book I describes illegal PPE instructions. Section 7.1.2 Illegal Commands beginning on page 60
describes illegal MFC commands.

Any attempt to execute an illegal PPE instruction causes an exception interrupt but has no other effect on
PPE operation. Any SPU that encounters an error when executing an instruction immediately halts program
execution, records the event in its status register, and requests an external interrupt. The illegal-instruction
interrupt should be enabled and routed to a PPE. In either case, the exception interrupt should cause the
illegal-instruction handler for the system to be invoked; the illegal-instruction handler then takes appropriate
action.

Any PPE instruction that consists entirely of binary zeros is an illegal instruction. In an SPU instruction, an
opcode of zero is a stop instruction, which causes SPU execution to stop. This increases the probability that
any attempt to execute data or uninitialized storage invokes the system illegal-instruction interrupt handler.

The MFC commands are not fully checked when enqueued. Therefore, an illegal MFC command might only
be recognized as it is taken off the queue for execution, asynchronously to when it was enqueued. Conse-
quently, illegal MFC commands are included with, and treated in the same manner as, other causes of MFC
or direct memory access (DMA) asynchronous exceptions (see Section 7.2 beginning on page 61).

In general, all exceptions, including illegal MFC commands and other DMA processing errors, cause the
associated command queue processing to suspend as soon as they are detected. The exceptions also cause
an exception interrupt to be generated and sent to a PPE. Section 2.3 Exceptions beginning on page 38 gives
an overview of the various ways in which these exception interrupts can be generated.

2.1.3 Reserved Class

Reserved instructions are allocated to specific purposes outside the scope of the CBEA or are intended for
use in future extensions of the CBEA. PowerPC Architecture, Book I defines the reserved PPE instructions.
Section 7 MFC Commands beginning on page 55 defines the reserved MFC commands. These are the only
commands that implementation-dependent applications should use. The specific implementation documenta-
tion describes how attempts to execute reserved instructions and commands are handled. If the use of a
reserved instruction or command is not covered in the specific implementation documentation, it is treated as
an illegal command.

2.2 Forms of Defined Instructions and Commands

In the defined set of instructions and commands, certain field or parameter settings can execute more effi-
ciently, or can produce an error condition. The CBEA defines the field and parameter settings as preferred
forms or invalid forms.

2.2.1 Preferred Forms

There are no preferred forms of the SPU instructions or of the MFC commands. The preferred forms of the
PPE instructions are defined in the PowerPC Architecture.
Version 1.02
October 11, 2007

Overview

Page 37 of 358

User Mode Environment

Cell Broadband Engine Architecture
2.2.2 Invalid Forms

Some defined instructions and commands have invalid forms. An instruction or command is considered
invalid if one or more fields (excluding those that specify the operation) are coded in a manner that can be
deduced as incorrect by examining that encoding. PowerPC User Instruction Set Architecture, Book I defines
invalid PPE instruction forms. Section 7.1 Command Classes beginning on page 57 defines invalid DMA
MFC commands.

2.2.3 Optional Forms

Some of the defined instructions are optional. Any attempt to execute an optional instruction that is not
provided by the implementation causes the system illegal-instruction interrupt handler to be invoked.

A facility, instruction, or command can be optional for any of the following reasons:

1. It is being phased into the architecture. At some future date, it will be required and no longer optional.

2. It is being phased out of the architecture. System developers should develop a migration plan to eliminate
its use in new systems.

3. It is useful primarily for certain kinds of applications and systems. It is likely to remain in the architecture,
as optional.

Reasons 1 and 2 permit the architecture to evolve gradually by providing an intermediate status for facilities
and instructions that are being added to or removed from the architecture. Reason 3 is intended for facilities
and instructions that are typically used primarily in library routines.

Currently, there are no optional commands. The Synergistic Processor Unit Instruction Set Architecture
document defines five optional, double-precision SPU instructions:

• Double Floating Compare Equal (dfceq)
• Double Floating Compare Magnitude Equal (dfcmeq)
• Double Floating Compare Greater Than (dfcgt)
• Double Floating Compare Magnitude Greater Than (dfcmgt)
• Double Floating Test Special Value (dftsv)

There is also an optional facility: the isolation facility.

2.2.4 Optional Fields

Optional fields in the MFC commands are assumed to be zero if not explicitly set. Software does not have to
set the optional fields if zeros achieve the required results. For a detailed description of the MFC commands,
see Section 7 MFC Commands beginning on page 55.

2.3 Exceptions

Note: For a more detailed description of exceptions, see the specific implementation documentation.

Exceptions are the result of an operation that cannot be executed as requested. In the CBEA, there are four
types of exceptions:

• Exceptions caused directly by the execution of a PPE instruction
• Exceptions caused by the execution of an SPU instruction
Overview

Page 38 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
• Exceptions caused by the execution of an MFC DMA command
• System-caused, asynchronous, external-event exceptions.

An exception can set status information in a register. It can also cause an interrupt handler of the system soft-
ware in a PPE to be invoked.

Exceptions caused by the execution of a PPE instruction are defined in PowerPC Architecture, Book I. In the
PowerPC Architecture, there are only two types of exceptions: those caused by the execution of a PPE
instruction and those caused by an asynchronous event. In most cases, the invocation of an interrupt handler
for exceptions caused by the execution of a PPE instruction is precise. (That is, the exception is created when
the event happens. The PPE instruction that caused the exception is known.) This is not true for floating-point
exceptions, when the floating-point exceptions mode is set to one of the imprecise modes. The invocation of
an interrupt handler for asynchronous events is always imprecise. (See PowerPC Architecture, Book I for
more information about PPE instruction-related exceptions.)

Exceptions caused by the execution of an SPU instruction are defined in the Synergistic Processor Unit
Instruction Set Architecture document and Section 21 Interrupt Facilities beginning on page 261. Exceptions
caused by the execution of an MFC command are defined in Section 21 Interrupt Facilities beginning on page
261. These exceptions generate interrupts in the CBEA. They are typically sent to a PPE as an imprecise
external interrupt where they invoke a privileged software interrupt handler.

Exceptions generated directly by the execution of an instruction include:

• The exceptions caused by the execution of a PowerPC instruction, as described in the PowerPC Archi-
tecture, Book I

• An SPU error that occurs when an instruction is executed

• The execution of a write channel (wrch) instruction to the SPU Write Outbound Interrupt Mailbox Channel
by the SPU

• The execution of an SPU stop-and-signal instruction

The exceptions generated by an MFC command include:

• An attempt to execute an illegal MFC command
• An attempt to execute a defined MFC command using an invalid form (that is, invalid parameters)
• An attempt to execute a defined MFC command with an alignment error
• The execution of an optional MFC command not supported by the implementation
• An attempt to access storage not defined by the MFC translation facility

2.4 SPU Events

The SPU supports an event facility that enables waiting for or polling for specific events. The event facility can
also generate an SPU asynchronous interrupt for specific events. If SPU interrupts are enabled, an occur-
rence of an unmasked event results in an SPU interrupt handler being invoked with the first instruction of the
interrupt handler located at local storage address ‘0’.

For more details, see Section 9.11 SPU Event Facility on page 150. Also see the Synergistic Processor Unit
Instruction Set Architecture for information about enabling, disabling, and handling program code executing
on an SPU.
Version 1.02
October 11, 2007

Overview

Page 39 of 358

User Mode Environment

Cell Broadband Engine Architecture
Overview

Page 40 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
3. Storage Models

A CBEA-compliant processor implements two concurrent storage models for an application program: the
virtual storage model of a PPE (also used by MFCs for DMA operations) and the local storage model of an
SPU. The PPE virtual storage model allows privileged software to provide the same or different views of the
real memory and I/O devices for the PPEs and SPEs in a processor. It is possible for multiple virtual address
spaces to exist. The SPU local storage model is restricted to applications running on SPUs and data transfers
handled by the MFC.

3.1 Virtual Storage Model

The virtual storage model implements a virtual storage model for applications. This means that a combination
of hardware and software can present a storage model that allows applications to exist within a virtual
address space larger than either the effective address space or the real address space.

Each program can access 264 bytes of effective address space, subject to limitations imposed by privileged
software. In a typical CBEA-compliant processor system, the effective address space of each program is a
subset of a larger virtual address space managed by privileged software.

Each effective address is translated to a real address (an address of a byte in real storage or a byte on an I/O
device) before being used to access storage. The hardware uses the memory management unit (MMU)
address translation facility to accomplish this (for more information, see PowerPC Architecture, Book III). The
privileged software manages the real storage resources of the system by setting up the tables and other infor-
mation used by the hardware address translation facility.

The user mode environment deals primarily with effective addresses that are translated by the MMU address
translation facility. Each effective address lies in a virtual page.1 The virtual page is mapped to a real page
(4 KB virtual page) or to a contiguous sequence of real pages (large virtual page) before data or instructions
in the virtual page are accessed.

In general, real storage might not be large enough to map all the virtual pages used by active applications.
With hardware support, the privileged software can attempt to use the available real pages to map a set of
virtual pages that is sufficient for the applications. If a sufficient set of virtual pages is maintained, “paging”
activity is minimized. If sufficient virtual pages are not available, performance degradation is likely.

Based on system standards and application requests, the privileged software can restrict access to virtual
pages. Access to the virtual pages can be read/write, read only, or no access. For example, program code
might be designated read only.

See PowerPC Architecture, Book III for a complete description of the virtual storage model.

3.2 SPU Local Storage Model

Each SPU has its own dedicated area of local storage. Applications running on a given SPU can only refer-
ence the associated local storage area by using a local address for instruction fetch, data load, and data store
operations. The individual local storage areas can be aliased to a real address within the main storage
domain. Any PPE can access these areas by using the appropriate effective address.

1. Page: An aligned unit of storage for which protection and control attributes can be specified independently, and for which
reference and change status are independently recorded.
Version 1.02
October 11, 2007

Storage Models

Page 41 of 358

User Mode Environment

Cell Broadband Engine Architecture
MFC units process data transfers, which move data between a local address and an effective address. The
local address always references the local storage area associated with the MFC. However, the effective
address can be arranged to reference any area in the main storage domain, including aliased local storage
areas, if required.

3.2.1 Local Storage Access

The CBEA allows the local storage of an SPU to have an alias in the real address space in the main storage
domain. This allows other processors in the main storage domain to access local storage through appropri-
ately mapped effective address space. It also allows external devices, such as a graphics device, to directly
access the local storage.

3.2.1.1 Mapping Requirements

Privileged software should access the aliased pages of local storage in the main storage domain. If not
accessed as caching inhibited, software must explicitly manage the coherency of local storage with other
system caches.

3.2.1.2 Local Storage Access Exceptions

MFC commands that access an effective address range that maps to its own local storage can produce an
error or unpredictable results. This occurs when the translated effective address area for a DMA overlaps the
local storage range of a DMA. If the two address ranges (translated effective address and local storage
address) overlap and the source is a lower address than the destination, the DMA results in the corruption of
the source data. Address overlap is not detectable and does not generate an exception. Therefore, it is the
programmer's and privileged software's responsibility to avoid an unintended overlap.

3.3 Single-Copy Atomicity

An access is single-copy atomic, or just atomic, if it is always performed in its entirety with no visible fragmen-
tation. Atomic accesses are thus serialized. Each happens in its entirety in some order, even when that order
is not specified in the program or enforced between processors. In the PowerPC Architecture, the following
single register accesses are always atomic:

• All byte accesses
• Halfword accesses aligned on halfword boundaries
• Word accesses aligned on word boundaries
• Doubleword accesses aligned on doubleword boundaries
• Quadword accesses aligned on quadword boundaries
• Cache line accesses by DMA commands aligned on cache line boundaries

No other accesses are guaranteed to be atomic.

An access that is not atomic is performed as a set of smaller, disjointed atomic accesses. The number and
alignment of these accesses are implementation dependent, as is the relative order in which they are
performed.
Storage Models

Page 42 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
In the CBEA, DMA accesses in the main storage domain are atomic if they meet the requirements of the
PowerPC Architecture. All other DMA transfers, if greater than a quadword or unaligned, are performed as a
set of smaller, disjointed atomic accesses. The number and alignment of these accesses are implementation
dependent, as is the relative order in which they are performed. Only quadword accesses of local storage are
atomic.

3.4 Cache Models

A cache model in which there is one cache for instructions and another cache for data is called a “Harvard-
style” cache. This is the model assumed by the PowerPC Architecture. Alternative cache models can be
implemented (such as, a “combined cache” model, in which a single cache is used for both instructions and
data, or a model in which there are several levels of caches). However, they must support the programming
model implied by a Harvard-style cache.

The processor is not required to maintain copies of storage locations in the instruction cache consistent with
modifications to those storage locations (such as, modifications caused by store instructions). A location in
the data cache is considered to be modified in that cache if the location has been modified (for example, by a
store instruction) and the modified data has not been written to main storage.

Cache management instructions allow programs to manage the caches when needed. For example, program
management of the caches is needed when a program generates or modifies code that is executed (that is,
when the program modifies data in storage and then attempts to execute the modified data as instructions).
The cache management instructions are also useful in optimizing the use of memory bandwidth in such appli-
cations as graphics and numerically intensive computing. The functions performed by these instructions
depend on the storage control attributes associated with the specified storage location.

The cache management instructions allow programs to perform the following functions:

• Invalidate the copy of storage in an instruction cache block (icbi)
• Provide a hint that the program will probably soon access a specified data cache block (dcbt, dcbtst)
• Set the contents of a data cache block to zeros (dcbz)
• Copy the contents of a modified data cache block to main storage (dcbst)
• Copy the contents of a modified data cache block to main storage and make the copy of the block in the

data cache invalid (dcbf)

The data cache commands in the first level DMA transfer cache (SL1) allow programs to perform the
following functions:

• Bring a range of effective addresses into the SL1 (sdcrt and sdcrtst)
• Write zeros to the contents of a range of effective addresses (sdcrz)
• Store the modified contents of a range of effective addresses (sdcrst)
• Store the modified contents of a range of effective addresses and invalidate the block (sdcrf)

3.5 Memory Coherence

Memory coherence refers to the ordering of stores to a single location. Atomic stores to a given location are
coherent if they are serialized in some order, and no processor or no device can observe any subset of those
stores as occurring in a conflicting order. This serialization order is an abstract sequence of values; the real
storage location need not assume each of the values written to it. For example, a processor can update a
location several times before the value is written to real storage.
Version 1.02
October 11, 2007

Storage Models

Page 43 of 358

User Mode Environment

Cell Broadband Engine Architecture
The result of a store operation is not available to every processor or to every device at the same instant. A
processor or device can observe only some of the values that are written to a location. However, when a loca-
tion is accessed atomically and coherently by all processors and devices, the sequence of values loaded from
the location by any processor or any device during any interval of time forms a subsequence of the sequence
of values that the location logically held during that interval. That is, a processor or device can never load a
newer value first and load an older value later.

Memory coherence is managed in blocks called coherence blocks. Their size is implementation dependent
but is typically larger than a word and often the size of a cache block.

For storage that does not require memory coherence, software must explicitly manage memory coherence to
the extent required by program correctness. The operations required to do this can be system dependent.

Programming Note:

In most systems, the default is that all storage is memory coherence required. For some applications in some
systems, software management of coherence can yield better performance. In such cases, a program can
request that a given unit of storage not be memory coherence required. It can manage the coherence of that
storage by using the sync instruction, the cache management instructions, and services provided by the
operating system.

3.6 Storage Control Attributes

Storage control attributes are associated with units of storage that are multiples of the page size. Each
storage access is performed according to the storage control attributes of the specified storage location. The
storage control attributes are:

• Write through required
• Caching inhibited
• Memory coherence required
• Guarded

These attributes have meaning only when an effective address is translated by the processor performing the
storage access. All combinations of these attributes are supported except write through required with caching
inhibited.

Programming Note:

The write through required and caching inhibited attributes are mutually exclusive because the write through
required attribute permits the storage location to be in the data cache while the caching inhibited attribute
does not. Storage that is write through required or caching inhibited is not intended to be used for general-
purpose programming. For example, the lwarx, ldarx, stwcx., and stdcx. PowerPC instructions and the
sdcrt, sdcrtst, sdcrz, sdcrst, and sdcrf MFC commands can cause the interrupt handler for system data
storage to be invoked if they specify a location in storage that has either of these attributes.
Storage Models

Page 44 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
3.7 Shared Storage

The CBEA supports the sharing of storage between programs, between different instances of the same
program, between SPUs, and between processors and other devices. It also supports access to a storage
location by one or more programs using different effective addresses or DMA addresses. All these cases are
considered storage sharing. Storage is shared in blocks of an integral number of pages.

When the same storage location has different effective addresses, the addresses are called aliases. Each
application can be granted separate access privileges to aliased pages.
Version 1.02
October 11, 2007

Storage Models

Page 45 of 358

User Mode Environment

Cell Broadband Engine Architecture
Storage Models

Page 46 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
4. PowerPC Processor Element

The Cell Broadband Engine Architecture (CBEA) includes PowerPC processors known as PowerPC
Processor Elements (PPEs). PowerPC Architecture, Books I- III defines the architecture of a PPE.

A PPE must be a 64-bit implementation, in which all effective addresses and registers, except some special-
purpose and memory-mapped I/O (MMIO) registers, are 64 bits long. All implementations have two modes of
operation: 64-bit mode and 32-bit mode. The mode controls how the effective address is interpreted, how
status bits are set, and how the count register is tested by branch-conditional instructions. All instructions are
available in both modes. In both 64-bit mode and 32-bit mode, instructions that set a 64-bit register affect all
64 bits. The value placed in the register is independent of mode. In both modes, effective address computa-
tions use all 64 bits of the relevant registers (such as, the general-purpose registers, link register, and count
register) and produce a 64-bit result. However, in 32-bit mode, the high-order 32 bits of the computed effec-
tive address are ignored when accessing data and are set to zero when fetching instructions.

The CBEA does not permit a PPE implementation that provides only the equivalent of 32-bit mode (an imple-
mentation in which all registers except floating-point registers are 32 bits long).

4.1 PowerPC Architecture, Book I and Book II Compatibility

The CBEA user mode environment is compatible with PowerPC Architecture, Book I. The CBEA privileged
mode environment is compatible with PowerPC Architecture, Book II. A PPE provides binary compatibility for
PowerPC applications, except as described in Section 4.1.2 Incompatibilities with PowerPC Architecture,
Book I.

The CBEA does not automatically track changes and extensions to the PowerPC Architecture. Inclusion of
changes and extensions to the PowerPC Architecture will be identified in future version of the CBEA.

4.1.1 Optional Features in PowerPC Architecture, Book I (Required for CBEA)

The following instructions are considered optional in the PowerPC Architecture but are required for a PPE by
the CBEA user mode environment:

• Floating reciprocal estimate single A-form (fres)
• Floating reciprocal square-root estimate A-form (frsqte)

The fres and frsqte instructions are optional floating-point instructions in the PowerPC Architecture. These
instructions are a subset of the graphics group. An implementation cannot claim support for the graphics
group without implementing the remaining instructions in this group. PowerPC Architecture, Book I describes
these instructions.

Note: The optional PowerPC floating-point instructions that are mandatory in the CBEA are needed for the
application space targeted by the CBEA.

4.1.2 Incompatibilities with PowerPC Architecture, Book I

There are no incompatibilities with PowerPC Architecture, Book I.
Version 1.02
October 11, 2007

PowerPC Processor Element

Page 47 of 358

User Mode Environment

Cell Broadband Engine Architecture
4.1.3 Optional Features in PowerPC Architecture, Book II (Required for CBEA)

The following instruction is considered optional in the PowerPC Architecture but is required in the CBEA:

• Data cache block touch X-form (dcbt)

This optional version of the data cache block touch instruction permits a program to provide a hint regard-
ing a sequence of contiguous data cache blocks. Such a sequence is called a “data stream.” A dcbt
instruction in which TH[0:3] is not equal to x'0' is said to be a “data stream variant” of dcbt. For more
information on the optional version of the dcbt instruction, see Book II of the PowerPC Architecture. For
more details on the variants of the dcbt instruction supported by an implementation, see the specific
implementation documentation.

4.1.4 Incompatibilities with PowerPC Architecture, Book II

There are no incompatibilities with PowerPC Architecture, Book II.

4.1.5 Extensions to the PowerPC Architecture, Books I and II

The following facility is considered optional in PowerPC Architecture, Books I and II but is required for compli-
ance with the Cell Broadband Engine Architecture:

• Vector/SIMD multimedia extension (optional) (see page 319)
PowerPC Processor Element

Page 48 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
5. Synergistic Processor Unit

The intent of the synergistic processor unit (SPU) is to fill a void between general-purpose processors and
special-purpose hardware. General-purpose processors aim to achieve the best average performance on a
broad set of applications. Special-purpose hardware aims to achieve the best performance on a single appli-
cation. The SPU, however, aims to achieve leadership performance on critical workloads for game, media,
and broadband systems. The intent of the SPU and the Cell Broadband Engine Architecture (CBEA) is to
provide a high degree of control to expert (real-time) programmers while maintaining ease of programming.

The SPU implements a its own instruction set architecture (ISA). This architecture is described in a separate
document, the Synergistic Processor Unit Instruction Set Architecture.

The main characteristics of this architecture are:

• Load-store architecture with sequential semantics, using a set of 128 registers, each of which is 128 bits
wide.

• Single-instruction, multiple-data (SIMD) capability

– Sixteen 8-bit integers
– Eight 16-bit integers
– Four 32-bit integer or four single-precision floating-point values
– Two double-precision floating point

• SPU load and store instructions access only the associated local storage register

• Channel input/output for memory flow controller (MFC) control (used for external data access)

The SPU has the following restrictions:

• No direct access to main storage (access to main storage using MFC facilities only)

• No distinction between user mode and privileged state

• No access to critical system control such as page-table entries (PowerPC Processor Element [PPE] priv-
ileged software should enforce this restriction)

• No synchronization facilities for shared local storage access

The intent of the SPU is to enable applications that require a high computational unit density and that can
effectively use the instruction set provided. A significant number of SPU cores in a system, managed by a
PPE, allows for cost-effective processing over a wide range of applications.
Version 1.02
October 11, 2007

Synergistic Processor Unit

Page 49 of 358

User Mode Environment

Cell Broadband Engine Architecture
Synergistic Processor Unit

Page 50 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
6. Memory Flow Controller

In a Cell Broadband Engine Architecture (CBEA)-compliant processor, the memory flow controller (MFC)
serves as an interface to the system and to other elements for a synergistic processor unit (SPU). It provides
the primary mechanism for data transfer, protection, and synchronization between main storage and the local
storage arrays. As discussed in Section 1.1 Organization of a CBEA-Compliant Processor on page 27, there
is logically an MFC for each SPU in a processor. Some implementations can share resources of a single MFC
between multiple SPUs. In this case, all the facilities and commands defined for the MFC must appear inde-
pendent to software for each SPU. The effects of sharing an MFC must be limited to implementation-depen-
dent facilities and commands.

Figure 6-1 shows a high-level block diagram of a typical MFC. In this illustration, the MFC has two interfaces
to the SPU, two interfaces to the bus interface unit (BIU), and two interfaces to an optional first level DMA
transfer cache (SL1). The SPU interfaces are the SPU channel interface and the SPU local storage (LS)
interface. The SPU channel interface allows the SPU to access MFC facilities and to issue MFC commands.
The MFC uses the SPU local storage interfaces to access local storage in the SPU. One interface to the BIU
allows memory-mapped I/O (MMIO) access to the MFC facilities. This interface also allows other processors
to issue MFC commands. Commands issued using MMIO are called MFC proxy commands. The other inter-
face to the BIU carries the real address. The interfaces to the SL1 cache are mainly for data transfers. The
MFC uses one interface for access to the address translation tables in main storage. The other interface to
the SL1 cache transfers data between main storage and local storage.

Figure 6-1. Typical MFC Block Diagram

MFC

DMA Controller

MMU

SL1 (optional)

MFC

MMIO Interface

BIU

MFC Proxy
Command

D
at

a
P

at
h

RMT

RMT

SPU LS InterfaceSPU Channel Interface

Registers MFC SPU
 Command

DMA Request Unit

To Element Interconnect Bus

LS
 A

dd
re

ss

Atomic Request

Queue

Queue

Real Address
Version 1.02
October 11, 2007

Memory Flow Controller

Page 51 of 358

User Mode Environment

Cell Broadband Engine Architecture
As shown in Figure 6-1 on page 51, a typical MFC consists the following main units:

• MMIO interface
• MFC registers
• Direct memory access (DMA) controller

The MMIO interface maps the MFC facilities of the SPU into the real address space of the system. This
allows access to the MFC facilities from any processor or any device in the system. In addition, the MMIO
interface can be configured to map the local storage of the SPU into the real address space. This allows
direct access to the local storage from any processor or any device in the system that enables local-storage-
to-local-storage transfers and lets I/O devices directly access the local storage domain of an SPU. Coherency
is not maintained between SPU and MMIO accesses to the local storage domain.

6.1 MFC Facilities

Most of the MFC facilities are contained in the MFC Registers unit. Some facilities are contained in the direct
memory access controller (DMAC). A list of the facilities within the MFC follows.

User mode environment facilities include:

• Proxy Tag-Group Completion Facility (see page 92)
• SPU Control and Status Facilities (see page 96)
• Mailbox Facility (see page 101)
• SPU Signal Notification Facility (see page 105)
• MFC Multisource Synchronization Facility (see page 108)
• SPU Isolation Facility (see page 183)

Privileged mode environment facilities include:

• MFC Privileged Facilities (see page 221)
– MFC State Register One (see page 221)
– MFC Logical Partition ID Register (see page 223)
– MFC Storage Description Register (see page 224)
– MFC Data Address Register (see page 225)
– MFC Data Storage Interrupt Status Register (see page 226)
– MFC Address Compare Control Register (see page 227)
– MFC Local Storage Address Compare Facility (see page 229)
– MFC Command Error Register (see page 231)
– MFC Data Storage Interrupt Pointer Register (see page 232)
– MFC Control Register (see page 233)
– MFC Atomic Flush Register (see page 236)
– SPU Outbound Interrupt Mailbox Register (see page 237)

• SPU Privileged Facilities (see page 239)
– SPU Privileged Control Register (see page 239)
– SPU Local Storage Limit Register (see page 241)
– SPU Configuration Register (see page 245)

• SPE Context Save and Restore (see page 247)

Synchronization and the transfer of data are generally the responsibility of the DMAC within the MFC.
The DMAC can move data between the local storage of an SPU and the main storage area. Optionally, the
data can be cached in the SL1.
Memory Flow Controller

Page 52 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
The Synergistic Processor Elements (SPEs) and the PowerPC Processor Elements (PPEs) instruct the MFC
to perform these DMA operations by queuing DMA command requests to the MFC through one of the
command queues:

• Commands issued by an SPE are queued to the MFC SPU command queue.
• Commands issued by a PPE are queued to the MFC proxy command queue.

The MFC uses a memory management unit (MMU) to perform all MFC address translations and MFC access
protection checks required for the DMA transfers. The MMU handles MFC transfers in much the same way
that a PPE handles load and store operations.

Ordering of the data transfers for a given command adheres to the rules specified in the PowerPC Architec-
ture. Section 7.9 MFC Synchronization Commands beginning on page 73 describes the ordering between
commands.

Section 14 Storage Addressing beginning on page 199 describes the memory management facilities of a
CBEA-compliant processor.

Section 7.5 Get Commands (Main Storage to Local Storage) beginning on page 64 and Section 7.6 Put
Commands (Local Storage to Main Storage) beginning on page 65 describe the DMA data transfer
commands available to the application programmer. The MFC employs a 64-bit effective address field, which
is translated and then used to reference main storage. A 32-bit address field is used to reference local
storage directly.
Version 1.02
October 11, 2007

Memory Flow Controller

Page 53 of 358

User Mode Environment

Cell Broadband Engine Architecture
Memory Flow Controller

Page 54 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
7. MFC Commands

Memory flow controller (MFC) commands enable code executing in a synergistic processor unit (SPU) to
access main storage and maintain synchronization with other processors and devices in the system.
Commands are also provided to manage optional caches.

Code running on an SPU can issue MFC commands directly. MFC commands issued by an SPU are called
“MFC SPU commands”. Code running on another processor or device, such as a PowerPC Processor
Element (PPE), can issue MFC commands on behalf of an SPU. MFC commands issued by a PPE or
another processor or device are called “MFC proxy commands.”

MFC SPU commands—Code running on an SPU executes a series of channel instructions to issue an MFC
SPU command. MFC SPU commands are queued to the MFC SPU command queue.

MFC proxy commands—Code running on other processors or devices performs a series of memory-
mapped I/O (MMIO) transfers to issue an MFC proxy command for an SPE. MFC proxy commands are
queued to an MFC proxy command queue.

MFC commands that transfer data are called “MFC DMA commands.” The data transfer direction for MFC
direct memory access (DMA) commands is always referenced from the perspective of an SPE. Therefore,
commands that transfer data into an SPE (from main storage to local storage) are considered get commands.
Commands that transfer data out of an SPE (from local storage to main storage) are considered put
commands.

The following command modifiers are associated with the MFC DMA commands. These command modifiers
extend or refine the function of a command. For example, a put command moves data from local storage to
an effective address within the main storage domain. A puts command moves data from local storage to an
effective address within the main storage domain and starts the SPU after the DMA operation completes.

s Starts the execution of the SPU at the current location indicated by the SPU Next Program
Counter Register after the data has been transferred into or out of the local storage.

r Performance hint for DMA put operations. The hint is intended to allow another processor or
device, such as a PPE, to capture the data into its cache.

f Tag-specific fence. A command with a tag-specific fence is performed after all previously
issued commands within the same tag group and the same command queue. Thus, it is
locally ordered with respect to previously issued commands.

b Tag-specific barrier. A command with a tag-specific barrier is performed after all previously
issued commands within the same tag group and the same command queue. Commands
that are issued after a command with a tag-specific barrier and that are within the same tag
group and the same command queue are also performed after previously issued commands.
Thus, commands are locally ordered with respect to previously issued commands. A tag-
specific barrier on a command does not affect the order in which that command is performed
relative to subsequent commands.

l List command. Executes a list of list elements located in local storage. The maximum number
of elements is 2048. Each element describes a transfer of up to 16 KB.
Version 1.02
October 11, 2007

MFC Commands

Page 55 of 358

User Mode Environment

Cell Broadband Engine Architecture
Commands with an “s” command modifier can only be put into the MFC proxy command queue. Commands
with an “l” command modifier and all the MFC atomic commands can only be placed in the MFC SPU
command queue. All other commands described in this section can be placed in either of the command
queues. Commands issued from a PPE or another processor or device are issued on behalf of an SPE and
can be placed in the MFC proxy command queue.

Subsequent sections describe the MFC commands. Each description shows the command mnemonic
followed by a list of the mnemonics for the parameters that affect the operation of that command. Not all
parameters are used by all commands. As shown in the sample command description that follows, optional
parameters, such as MFC effective address high (EAH), are enclosed in brackets. (When EAH is not speci-
fied on a command, hardware must set EAH to ‘0’.)

cmd CL, TG, TS/LSZ, LSA, [EAH,] EAL/LA

Table 7-1 lists the parameter mnemonics.

Notes:

1. A list command is equivalent to performing a series of commands where the opcode is that of the com-
mand without the “l” command modifier. Each element in an MFC list defines one of the series of MFC
transfers to perform. For example:

getl CL, TG, LSZ, LSA, [EAH], LA is equivalent to:

while (LSZ > 0)
{

get CL, TG, LA(LTS), LSA, [EAH], LA(LEAL)
/* LSA is moved to next 16-byte boundary in LS */
LSA = LSA + LA(LTS);
if (LSA% 16!= 0)

LSA = (LSA & x‘7FF0’ + 16)

Table 7-1. Parameter Mnemonics

Parameter Parameter Name Register Name See
Note

CL MFC Class ID MFC_ClassID

TG MFC Command Tag Identification MFC_Tag

TS MFC Transfer Size MFC_Size 1

LSZ MFC List Size MFC_Size 1

LSA MFC Local Storage Address MFC_LSA

EAH MFC Effective Address High MFC_EAH 2

EAL MFC Effective Address Low MFC_EAL 3

LA MFC List Local Storage Address MFC_EAL 3

LTS List Element Transfer Size 4

LEAL List Element Effective Address Low 4

1. TS and LSZ share the same register offset. The meaning of the contents depends on the command modifier of the MFC opcode.
2. This parameter is optional.
3. EAL and LA share the same register offset. The meaning of the contents depends on the command modifier of the MFC opcode.
4. No associated registers. These parameters are located in local storage and are referenced by the list address (LA) parameter.
MFC Commands

Page 56 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
/* If LSA does not begin on a 16-byte boundary, increment to the next 16-byte boundary.*/
LA = LA + 8
LSZ = LSZ - 8

}

(For more information about the preceding code, see Conventions and Notation on page 17. For more
information about list elements, see Section 7.4 List Commands and List Elements on page 63.)

2. The effective address (EA) of an MFC command is formed as described below:

• For nonlist type commands: (EAH << 32) | EAL

• For list type commands: (EAH << 32) | LA (LEAL), where LA (LEAL) is the effective address low
parameter of the current list element pointed to by the list address. This construct assumes the LA is
incremented after each transfer.

3. The size of a transfer is TS bytes for nonlist commands; it is LA(LTS) bytes for each element of a list
command. For a list command, the number of elements is the MFC List Size (LSZ) divided by 8 bytes
(that is, 8 bytes per list element).

4. See Section 7.9 MFC Synchronization Commands on page 73, for a description of the barrier command
modifiers.

7.1 Command Classes

Commands can be categorized into the following three classes:

• Defined
• Illegal
• Reserved

The class of a command is determined by examining the opcode and, if it exists, the extended opcode. If a
command opcode, or a combination of an opcode and extended opcode, is not that of a defined or reserved
command, then the command is illegal.

A given command is in the same class for all implementations compliant with this release of the Cell Broad-
band Engine Architecture (CBEA). In future versions of the CBEA, commands that are currently illegal might
become defined (by being added to the architecture), or reserved (by being assigned to a special-purpose
operation). Similarly, some commands that are currently reserved might become defined in a subsequent
architecture release.

7.1.1 Defined Commands

Defined commands fall into one of four categories:

• Data transfer or MFC DMA commands (see Table 7-2 on page 58)

– Data moved from local storage and placed in main storage (put commands)
– Data moved into local storage from main storage (get commands)

• SL1 storage control commands (see Table 7-3 on page 59)

• MFC synchronization commands (see Table 7-4 on page 60)

• MFC atomic commands (see Table 7-5 on page 60)
Version 1.02
October 11, 2007

MFC Commands

Page 57 of 358

User Mode Environment

Cell Broadband Engine Architecture
The data transfer commands are further divided into subcategories that define the direction of the data move-
ment (that is, to or from local storage). An application can place the data transfer commands listed in Table 7-
2 into the MFC command queues. Unless otherwise noted, these commands can be executed in any order
(asynchronously).

Note: Embedded barrier, fence, and synchronization commands must be used to ensure proper ordering
when ordering is required.

Table 7-2. Data Transfer or MFC DMA Commands (Page 1 of 2)

Mnemonic Opcode Support
(Proxy/Channel) Description

Put Commands

put x‘0020’ Proxy/Channel Moves data from local storage to an effective address within the main storage
domain.

puts x‘0028’ Proxy Moves data from local storage to an effective address within the main storage
domain. Starts the SPU after the DMA operation completes.

putr x‘0030’ Proxy/Channel Same as put with a PPE L2 cache scarf hint (used to send results to a PPE).1

putf x‘0022’ Proxy/Channel
Moves data from local storage to an effective address within the main storage
domain with fence. This command is locally ordered with respect to all previously
issued commands within the same tag group and command queue.

putb x‘0021’ Proxy/Channel

Moves data from local storage to an effective address within the main storage
domain with barrier. This command and all subsequent commands with the same
tag ID as this command are locally ordered with respect to all previously issued com-
mands within the same tag group and command queue.

putfs x‘002A’ Proxy

Moves data from local storage to an effective address within the main storage
domain with fence. This command is locally ordered with respect to all previously
issued commands within the same tag group and command queue. Starts the SPU
after the DMA operation completes.

putbs x‘0029’ Proxy

Moves data from local storage to an effective address within the main storage
domain with barrier. This command and all subsequent commands with the same
tag ID as this command are locally ordered with respect to all previously issued com-
mands within the same tag group and command queue. Starts the SPU after DMA
operation completes.

putrf x‘0032’ Proxy/Channel Same as putf with a PPE L2 cache scarf hint used to send results to a PPE.1

putrb x‘0031’ Proxy/Channel Same as putb with a PPE L2 cache scarf hint used to send results to a PPE. 1

putl x‘0024’ Channel Moves data from local storage to an effective address within the main storage
domain using an MFC list.

putrl x‘0034’ Channel Same as putl with a PPE L2 cache scarf hint used to send results to a PPE.1

putlf x‘0026’ Channel
Moves data from local storage to an effective address within the main storage
domain using an MFC list with fence. This command is locally ordered with respect
to all previously issued commands within the same tag group and command queue.

putlb x‘0025’ Channel

Moves data from local storage to an effective address within the main storage
domain using an MFC list with barrier. This command and all subsequent commands
with the same tag ID as this command are locally ordered with respect to all previ-
ously issued commands within the same tag group and command queue.

putrlf x‘0036’ Channel Same as putlf with a PPE L2 cache scarf hint used to send results to a PPE.1

putrlb x‘0035’ Channel Same as putlb with a PPE L2 cache scarf hint used to send results to a PPE.1

1. Scarfing is the direct transfer of data to a PPE L2 cache.
MFC Commands

Page 58 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
Table 7-3 lists the storage control commands available for the first level DMA transfer cache (SL1).

Table 7-4 on page 60 lists the synchronization commands available in the CBEA.

Get Commands

get x‘0040’ Proxy/Channel Moves data from an effective address within the main storage domain to local stor-
age.

gets x‘0048’ Proxy Moves data from an effective address within the main storage domain to local stor-
age. Starts the SPU after DMA operation completes.

getf x‘0042’ Proxy/Channel
Moves data from an effective address within the main storage domain to local stor-
age with fence. This command is locally ordered with respect to all previously issued
commands within the same tag group and command queue.

getb x‘0041’ Proxy/Channel

Moves data from an effective address to local storage with barrier. This command
and all subsequent commands with the same tag ID as this command are locally
ordered with respect to all previously issued commands within the same tag group
and command queue.

getfs x‘004A’ Proxy

Moves data from an effective address within the main storage domain to local stor-
age with fence. This command is locally ordered with respect to all previously issued
commands within the same tag group. Starts the SPU after DMA operation com-
pletes.

getbs x‘0049’ Proxy

Moves data from an effective address within the main storage domain to local stor-
age with barrier. This command and all subsequent commands with the same tag ID
as this command are locally ordered with respect to all previously issued commands
within the same tag group and command queue. Starts the SPU after DMA operation
completes.

getl x‘0044’ Channel Moves data from an effective address within the main storage domain to local stor-
age using an MFC list.

getlf x‘0046’ Channel
Moves data from an effective address within the main storage domain to local stor-
age using an MFC list with fence. This command is locally ordered with respect to all
previously issued commands within the same tag group and command queue.

getlb x‘0045’ Channel

Moves data from an effective address within the main storage domain to local stor-
age using an MFC list with barrier. This command and all subsequent commands
with the same tag ID as this command are locally ordered with respect to all previ-
ously issued commands within the same tag group and command queue.

Table 7-3. SL1 Storage Control Commands

Mnemonic Opcode Support Description

sdcrt x'0080' Proxy/Channel Brings a range of effective addresses into the SL1 (performance hint for DMA gets).1

sdcrtst x'0081’ Proxy/Channel Brings a range of effective addresses into the SL1 (performance hint for DMA puts).1

sdcrz x'0089’ Proxy/Channel Writes zeros to the contents of a range of effective addresses.

sdcrst x'008D’ Proxy/Channel Stores the modified contents of a range of effective addresses.

sdcrf x'008F’ Proxy/Channel Stores the modified contents of a range of effective addresses and invalidates the
block.

1. These commands do not transfer data in implementations without an SL1.

Table 7-2. Data Transfer or MFC DMA Commands (Page 2 of 2)

Mnemonic Opcode Support
(Proxy/Channel) Description

1. Scarfing is the direct transfer of data to a PPE L2 cache.
Version 1.02
October 11, 2007

MFC Commands

Page 59 of 358

User Mode Environment

Cell Broadband Engine Architecture
Table 7-5 lists the atomic commands available in the CBEA.

7.1.2 Illegal Commands

The illegal class of commands includes any commands not in the defined class or in the reserved class.
Illegal commands are intended for future versions of the CBEA. That is, a future version of the CBEA might
define an operation for a command opcode currently in the illegal class.

Table 7-4. MFC Synchronization Commands

Command Opcode Support Description

sndsig x‘00A0’ Proxy/Channel Updates signal notification registers in an I/O device or another SPE. This command
is actually a 4-byte DMA put that can go to any address.

sndsigf x‘00A2’ Proxy/Channel Updates signal notification registers in an I/O device or another SPE with fence. This
command is actually a 4-byte DMA put that can go to any address.

sndsigb x‘00A1’ Proxy/Channel Updates signal notification registers in an I/O device or another SPE with barrier. This
command is actually a 4-byte DMA put that can go to any address.

barrier x‘00C0’ Proxy/Channel

Barrier type ordering. Ensures ordering of all preceding, nonimmediate DMA com-
mands with respect to all commands following the barrier command within the same
command queue. The barrier command has no effect on the immediate DMA com-
mands: getllar, putllc, and putlluc.

mfceieio x‘00C8’ Proxy/Channel

The mfceieio command orders the storage transactions caused by get and put com-
mands. To ensure that the commands are correctly ordered, the commands must be
in the same tag group as the mfceieio command, or a barrier command must be
issued before the mfceieio command. The mfceieio command orders transactions
as follows, assuming the MFC DMA commands are within the specified tag group.

• Orders get or put commands with respect to other get or put commands that
access storage defined as caching inhibited and guarded.

• Orders put commands that access storage defined as write through required
with respect to put or get commands that access storage defined as caching
inhibited and guarded.

• Orders put or get commands that access storage defined as caching inhibited
and guarded with respect to put commands that access storage defined as write
through required.

• Orders put commands with respect to put commands that access storage that is
defined as memory coherency required and is neither write through required nor
caching inhibited.

mfcsync x‘00CC’ Proxy/Channel
The mfcsync command controls the ordering of DMA put and get operations within
the specified tag group with respect to other processing units and devices in the sys-
tem.

Table 7-5. MFC Atomic Commands

Command Opcode Support Description

getllar x‘00D0’ Channel Gets a lock line and creates a reservation (executes immediately).

putllc x‘00B4’ Channel Puts lock line conditional on a reservation (executes immediately).

putlluc x‘00B0’ Channel Puts lock line unconditional (executes immediately).

putqlluc x‘00B8’ Channel Puts lock line unconditional (queued form).
MFC Commands

Page 60 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
7.1.3 Reserved Commands

Reserved commands are intended for implementation dependent use. Commands in this class have the
reserved upper 8 bits of the MFC command opcode parameter in the range of x‘8000’ ≤ MFC command
opcode ≤ x‘FFFF’.

7.2 Command Exceptions

The CBEA does not support unaligned DMAs. If an unaligned DMA operation is encountered, MFC command
queue processing is suspended, and a DMA alignment interrupt is generated. The CBEA does not execute
invalid DMA commands. If an attempt is made to execute an invalid DMA command, an instruction caused
interrupt is generated. Table 7-6 summarizes the command and alignment errors that the CBEA identifies.
For more information, see Section 21 Interrupt Facilities beginning on page 261.

Table 7-6. Command Errors and Alignment Errors (Page 1 of 2)

Type of Error Description of Error

DMA Alignment Errors1, 2

Transfer Size Alignment
Error

• The transfer size is not 0, 1, 2, 4, or 8 bytes or a multiple of 16 bytes.
• A transfer size is greater than 16 KB.
• Any reserved bit is not ‘0’.3

• The transfer size for a sndsig command is not 4 B.
Note: Requirements for the storage control (SL1) commands are implementation specific. For more
information, see the implementation specific documentation.

List Transfer Size Alignment
Error

• Any reserved bit is not ‘0’.3

• A list transfer size is greater than 16 KB.

Local Storage Address
Alignment Error

• In the case of a list LS address, LS(0:14) must equal LSA(14:28). The address is aligned on a
doubleword (8-byte or 64-bit) boundary.

• The following local storage address and transfer size combinations cause an alignment error:
– Local storage address bit 31 is not ‘0’ for a transfer size of 2 bytes
– Local storage address bits 30 - 31 are not ‘00’ for a transfer size of 4 bytes
– Local storage address bits 29 - 31 are not ‘000’ for a transfer size of 8 bytes
– Local storage address bits 28 - 31 are not ‘0000’ for a transfer size of a multiple of 16 bytes

Effective Address Alignment
Error

• Bits 60 - 63 of the 64-bit effective address formed by EAH || EAL are not equal to LSA(28:31) for all
variants of the put and get commands, or the sndsig command.

List Address Alignment Error • Bits 29 - 31 of the list address (LA) are not ‘000’.

DMA Command Errors

Atomic Command Pending • A getllar, putllc, or putlluc is issued to the MFC SPU command queue while another getllar,
putllc, or putlluc is pending.

1. Not checked for mfcsync, mfceieio, barrier, and the MFC atomic commands.
2. An alignment error might not be reported if a command error is present.
3. Some implementations might ignore reserved bits.
Version 1.02
October 11, 2007

MFC Commands

Page 61 of 358

User Mode Environment

Cell Broadband Engine Architecture
7.3 MFC Command Parameters

The parameters are not the same for the MFC proxy commands (used by PPEs and other devices) and the
MFC SPU commands (used by the SPU). The MFC proxy commands do not support the “l” command modi-
fier, while the MFC SPU commands do not support the “s” command modifier. Because the MFC proxy
commands do not support the “l” command modifier, they also do not support the LSZ and LA parameters
types. In addition, there are issue sequence and policy differences between MFC proxy commands and MFC
SPU commands. The issue sequences are described in Section 8.2 MFC Proxy Command Issue Sequence
beginning on page 88 and in Section 9.2 MFC SPU Command Issue Sequence beginning on page 125.

The parameters are supported as described in the following sections:

Invalid MFC Command for
MFC Command Queue

• An MFC command with an <l> modifier is issued to the MFC proxy command queue.
• An MFC atomic command is issued to the MFC proxy command queue.

• An MFC command with an <s> modifier is issued to the MFC SPU command queue.

Invalid MFC Command
Opcode

• Invalid opcode. For a list of valid opcodes, see Table 7-2 Data Transfer or MFC DMA Commands
on page 58, Table 7-3 SL1 Storage Control Commands on page 59, Table 7-4 MFC Synchroniza-
tion Commands on page 60, and Table 7-5 MFC Atomic Commands on page 60.

• Any reserved bit is not ‘0’.3

Invalid MFC Command Tag • Any reserved bit is not ‘0’.3

MFC class ID parameter
(CL)

See Section 8.1.2 MFC Class ID Register on page 82 and
Section 9.1.2 MFC Class ID Channel on page 118.

MFC command tag identifi-
cation parameter (TG)

See Section 8.1.3 MFC Command Tag Register on page 83 and
Section 9.1.3 MFC Command Tag Identification Channel on page 119.

MFC transfer size parameter
(TS)

See Section 8.1.4 MFC Transfer Size Register on page 84 and
Section 9.1.4 MFC Transfer Size or List Size Channel on page 120.

MFC list size parameter
(LSZ)

See Section 9.1.4 MFC Transfer Size or List Size Channel on page 120.

MFC local storage address
parameter (LSA)

See Section 8.1.5 MFC Local Storage Address Register on page 85 and
Section 9.1.5 MFC Local Storage Address Channel on page 121.

MFC effective address high
(EAH) parameter (optional)

See Section 8.1.6 MFC Effective Address High Register on page 86 and
Section 9.1.7 MFC Effective Address High Channel on page 124.

MFC effective address low
(EAL) parameter

See Section 8.1.7 MFC Effective Address Low Register on page 87 and
Section 9.1.6 MFC Effective Address Low or List Address Channel on page 122.

MFC list local storage
address (LA) parameter

See Section 9.1.6 MFC Effective Address Low or List Address Channel on
page 122.

Table 7-6. Command Errors and Alignment Errors (Page 2 of 2)

Type of Error Description of Error

1. Not checked for mfcsync, mfceieio, barrier, and the MFC atomic commands.
2. An alignment error might not be reported if a command error is present.
3. Some implementations might ignore reserved bits.
MFC Commands

Page 62 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
7.4 List Commands and List Elements

Commands with an “l” command modifier are list commands. They use list elements located in the local
storage pointed to by the MFC list local storage address (LA) parameter of a list command. The element
contains the lower order word of the effective address (LEAL) and the list element transfer size (LTS). The
element also contains a stall-and-notify flag.

The list commands use a list of effective addresses and transfer size pairs, or list elements, stored in local
storage as the parameters for the DMA transfer. The first word contains the transfer size and a stall-and-
notify flag. The second word contains the lower order 32 bits of the effective address. While the starting effec-
tive address is specified for each transfer element in the list, the local storage address involved in the transfer
is only specified in the primary list command. The local storage address is internally incremented based on
the amount of data transferred by each element in the list.

List commands are not supported on the MFC proxy command queue.

Special handling is performed for list elements with a transfer size less than 16 bytes. In this case, the local
storage address for the transfer is adjusted to have the same quadword (16-bytes) alignment as the effective
address for the transfer. Following the transfer, the local storage address is internally incremented by the
amount of data transferred. If this address does not begin on a 16-byte boundary for a list element transfer,
the hardware automatically increments the local storage address to the next 16-byte boundary.

Effective addresses specified in the list elements are relative to the 4 GB area defined by the upper 32 bits of
the effective address specified in the base list command. While MFC list starting addresses are relative to the
single 4 GB area, transfers within a list element can cross the 4 GB boundary.

Setting the Stall-and-Notify (S) bit causes the DMA operation to suspend execution of this list after the current
list element has been processed and to set a stall-and-notify event status for the SPU. Execution of the
stalled list does not resume until the MFC receives a stall-and-notify acknowledgment from the SPU program.
Stall-and-notify events are posted to the SPU program using the associated command tag group identifier.
When there are multiple list commands in the same tag group with stall-and-notify elements, software should
ensure that a tag-specific barrier or global barrier forces ordered execution of the list commands to avoid
ambiguity. Setting the S bit on the last element in a list is not supported and will be ignored.

All list elements within the list command are guaranteed to be started and issued in sequence. All elements
within a list command have an inherent local ordering. All transfers to guarded pages within an MFC list must
adhere to the caching inhibited and guarded page semantics with respect to ordering.

A single list command can contain up to 2048 elements, occupying 16 KB of local storage.

S Reserved LTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LEAL

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 S Stall-and-notify bit

1:16 Reserved Reserved

17:31 LTS List element transfer size (LTS)
Version 1.02
October 11, 2007

MFC Commands

Page 63 of 358

User Mode Environment

Cell Broadband Engine Architecture
Programming Note:

If at all possible, list elements with transfer sizes of 128 bytes or more should be aligned on 128-byte bound-
aries for maximum performance. Smaller transfers and transfers not aligned on 128-byte boundaries result in
poorer performance. Transfers of less than 16 bytes are inefficient and should be used only when necessary
to interface with I/O devices.

7.5 Get Commands (Main Storage to Local Storage)

Get commands are conventional DMA transfer commands. The memory management unit (MMU) translates
the effective address provided with the MFC get command into a real address as appropriate. Then, MFC get
commands copy the number of bytes of storage specified by the transfer size parameter from the translated
effective address (that is, the real address) to the destination local storage address.

When the get and get<f,b> commands have an “s” command modifier, they can set the Run bit after the local
storage has been updated. Commands with an “s” command modifier can only be executed from the MFC
proxy command queue.

7.5.1 Get Command

The get (get[s]) command transfers the number of bytes specified by the transfer size parameter from the
effective address to the local storage address of the corresponding SPU.

get CL, TG, TS, LSA, [EAH,] EAL
gets CL, TG, TS, LSA, [EAH,] EAL

7.5.2 Get with Fence or with Barrier Command

Like the get command, the get with fence or with barrier (get<f,b>[s]) command transfers the number of
bytes specified by the transfer size parameter from the effective address to the local storage address of the
corresponding SPU. Unlike the get command, the get<f,b> command provides local ordering with respect to
other commands within the same tag group (that is, commands with the same tag ID).

getf CL, TG, TS, LSA, [EAH,] EAL
getb CL, TG, TS, LSA, [EAH,] EAL
getfs CL, TG, TS, LSA, [EAH,] EAL
getbs CL, TG, TS, LSA, [EAH,] EAL

7.5.3 Get List Command

The get list (getl) command lets software transfer discontinuous blocks of data from the effective address
space to a contiguous area of local storage using a single DMA list command. This command uses a list of list
elements; each element consists of an effective address (low) and a transfer size pair. This list, the MFC list,
is stored in local storage and is the source of the DMA operation. The list address parameter of this command

32:63 LEAL Low word of the 64-bit effective address (LEAL)

Bits Field Name Description
MFC Commands

Page 64 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
contains the starting address of the MFC list in local storage. The list address is a local storage address, and
is therefore not translated by the MMU. The number of bytes in the list is provided in the list size parameter.
The list size parameter must be a multiple of 8 bytes for this DMA command, and the list address parameter
must be aligned on an 8-byte boundary in local storage. The maximum list size is architecturally 16 KB.
However, the supported list size is implementation dependent. This command is not available from the MFC
proxy command queue.

The DMA parameters provided in local storage must follow the same format as the get command. The local
storage address (LSA) must start on a 16-byte boundary unless the transfer size of the first list element is
less than 16 bytes.

The effective address (high) parameter is provided as part of the getl command. While the starting effective
address is always EAH || LEAL, a DMA transfer within a list element can cross the 232 boundary.

getl CL, TG, LSZ, LSA, [EAH,] LA

Note: A DMA command with list operation that uses a local storage destination within the list area produces
unpredictable results, if the transfer modifies list elements not yet started.

7.5.4 Get List with Fence or with Barrier Command

Like the getl command, the get list with fence or with barrier (getl<f,b>) command transfers discontinuous
blocks of data from the effective address space to a contiguous area of local storage. Unlike the getl
command, the getl<f,b> command provides local ordering with respect to other commands within the same
tag group (that is, commands with the same tag ID). This command is not available from the MFC proxy
command queue.

getlf CL, TG, LSZ, LSA, [EAH,] LA
getlb CL, TG, LSZ, LSA, [EAH,] LA

7.6 Put Commands (Local Storage to Main Storage)

Put commands are conventional DMA transfers. The MMU translates the effective address provided with the
MFC put command into a real address as appropriate. Then, MFC put commands transfer the number of
bytes specified by the transfer size parameter from the source local storage address to the translated effec-
tive address (that is, the real address).

When the put and put<f,b> commands have an “s” command modifier, they can set the Run bit after the
DMA operation completes. Commands with an “s” command modifier can only be executed from the MFC
proxy command queue.

7.6.1 Put Command

The put (put[s]) command transfers the number of bytes specified by the transfer size parameter from the
local storage address of the corresponding SPU to the effective address.

put CL, TG, TS, LSA, [EAH,] EAL
puts CL, TG, TS, LSA, [EAH,] EAL
Version 1.02
October 11, 2007

MFC Commands

Page 65 of 358

User Mode Environment

Cell Broadband Engine Architecture
7.6.2 Put with Fence or with Barrier Command

Like the put command, the put with fence or with barrier (put<f,b>[s]) command transfers the number of
bytes specified by the transfer size parameter from the local storage address of the corresponding SPU to the
effective address. Unlike the put command, the put<f,b> command provides local ordering with respect to
other commands within the same tag group (that is, commands with the same tag ID).

putf CL, TG, TS, LSA, [EAH,] EAL
putb CL, TG, TS, LSA, [EAH,] EAL
putfs CL, TG, TS, LSA, [EAH,] EAL
putbs CL, TG, TS, LSA, [EAH,] EAL

7.6.3 Put List Command

The put list (putl) command lets software transfer a contiguous area of local storage to discontinuous areas
in the effective address space using a single DMA list command. This command uses a list of list elements;
each element consists of an effective address (low) and a transfer size pair. This list, the MFC list, is stored in
local storage and is the destination of the DMA operation. The list address parameter of this command
contains the starting address of the MFC list in local storage. The list address is a local storage address, and
is therefore not translated by the MMU. The number of bytes in the list is provided in the list size parameter.
The list size parameter must be a multiple of 8 bytes for this DMA command, and the list address parameter
must be aligned on an 8-byte boundary in local storage. The maximum list size is architecturally 16 KB.
However, the supported list size is implementation dependent. This command is not available from the MFC
proxy command queue.

The DMA parameters provided in local storage must follow the same format as the put command. The local
storage address (LSA) must start on a 16-byte boundary unless the transfer size of the first list element is
less than 16 bytes.

The effective address (high) parameter is provided as part of the putl command. While the starting effective
address is always EAH || LEAL, a DMA transfer within a list element can cross the 232 boundary.

putl CL, TG, LSZ, LSA, [EAH,] LA

7.6.4 Put List with Fence or with Barrier Command

Like the putl command, the put list with fence or with barrier (putl<f,b>) command transfers data from a
contiguous area of local storage to discontinuous blocks in the effective address space. Unlike the putl
command, the putl<f,b> command provides local ordering with respect to other commands within the same
tag group (that is, commands with the same tag ID). This command is not available from the MFC proxy
command queue.

putlf CL, TG, LSZ, [EAH,] LA
putlb CL, TG, LSZ, LSA, [EAH,] LA

7.6.5 Put Result (hint) Command

The put, putl, put<f,b>, and putl<f,b> commands also support a result modifier (putr, putr<f,b>, putrl,
putrl<f,b>). These commands perform the same operations. However, they also provide a hint to the MFC
that the data for the transfer can be directly transferred into a PPE L2 cache. This is only a hint for perfor-
MFC Commands

Page 66 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
mance. If the specified cache line is not found in a PPE L2 cache, the data will be written to system memory.
This form of these commands enables an SPU to deliver results directly to a PPE by updating the PPE L2
cache.

Implementation Note:

The current implementation for the CBEA-compliant processor does not support the direct transfer of data to
the PPE L2 cache (called scarfing). These commands are treated as if the result hint were not provided.

7.7 Storage Control Commands

The storage control commands described in this section are similar to the PowerPC storage control instruc-
tions defined in PowerPC Architecture, Book II. SL1 storage control commands affect the number of bytes of
storage specified by the transfer size parameter. The description of each command explains how it affects
storage. These storage control commands all create a tag-specific barrier even though there is no modi-
fier. Thus, the initial storage control command and all subsequent commands in the same tag group are
ordered with respect to all previous commands in the queue that have the same tag group ID. Subsequent
commands in the same tag group as the SL1 storage control command will not start until the storage control
command has completed.

7.7.1 SL1 Data Cache Range Touch Command

The SL1 data cache range touch (sdcrt) command is a hint to the MFC that the SPU will probably issue a
DMA get command to the range of addresses specified by the effective address and transfer size parame-
ters. This command only provides a hint to the MFC; it does not cause any data transfers. Execution of the
sdcrt command does not cause the system error handler to be invoked. Updates of the Reference and
Change (RC) bits within the page table entry (PTE) are not required for this operation.

sdcrt CL, TG, TS, [EAH,] EAL

Implementation Note:

The MFC responds to the hint provided by the sdcrt command by taking actions to reduce the latency of
subsequent MFC DMA get and put commands that access the specified block. (Such actions might include
prefetching the block into levels of the storage hierarchy that are near an SPE.) For example, the MFC might
prefetch data into an SL1 that is associated with the SPU that issued the sdcrt command. Doing so affects
the state of other system caches, including other atomic update facilities, as required by the coherency
protocol of the system.

An SPE might implement an atomic update facility independent from the SL1 for the reservations created by
the getllar command. If so, the MFC sdcrt command has no effect on any data cached in this facility.
Version 1.02
October 11, 2007

MFC Commands

Page 67 of 358

User Mode Environment

Cell Broadband Engine Architecture
7.7.2 SL1 Data Cache Range Touch for Store Command

The SL1 data cache range touch for store (sdcrtst) command is a hint to the MFC that the SPU will probably
issue a DMA put command to the range of addresses specified by the effective address and transfer size
parameters. This command only provides a hint to the MFC; it does not cause any data transfers. Execution
of the sdcrtst command does not cause the system error handler to be invoked. Updates of the Reference
and Change (RC) bits within the PTE are not required for this operation.

sdcrtst CL, TG, TS, [EAH,] EAL

Implementation Note:

The MFC responds to the hint provided by the sdcrtst command by taking actions to reduce the latency of
subsequent MFC DMA get and put commands that access the specified block. (Such actions might include
prefetching the block into levels of the storage hierarchy that are near an SPE.) For example, the MFC might
prefetch data into an SL1 that is associated with the SPU that issued the sdcrtst command using a protocol
that tells the system that the data is intended to be modified. Doing so affects the state of other system
caches, including other atomic update facilities, as required by the coherency protocol of the system.

An SPE might implement an atomic update facility independent from the SL1 for the reservations created by
the getllar command. If so, the MFC sdcrtst command has no effect on any data cached in this facility.

7.7.3 SL1 Data Cache Range Set to Zero Command

The SL1 data cache range set to zero (sdcrz) command sets the range of storage specified by the effective
address and transfer size parameters to zero. This command does not cause the data to exist in the SL1 if
the storage area is caching inhibited.

sdcrz CL, TG, TS, [EAH,] EAL

Note: All the bytes in the data block containing the byte addressed by the effective address are set to 0.
Doing so affects the state of other system caches, including the SL1s and other atomic update facilities, as
required by the coherency protocol of the system.

Implementation Note:

An SPE might implement an atomic update facility independent from the SL1 for the reservations created by
the getllar command. If so, the MFC sdcrz command does not cause data to be brought into the atomic
facility if the data block is not already present in this facility.

7.7.4 SL1 Data Cache Range Store Command

The SL1 data cache range store (sdcrst) command causes a data block in the associated SL1 cache and
any other processor cache to be written to main storage when it meets the following conditions:

• The data block is in memory-coherence-required storage.
• The data block is considered modified.
• The data block is within the address range defined by the effective address and transfer size parameters.

The data block can remain in the processor cache, but it is no longer considered modified.
MFC Commands

Page 68 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
If a data block in the associated SL1 cache is not in memory-coherence-required storage and is considered
modified, the sdcrst command writes the modified block of only the SL1 cache associated with the issuing
SPU to main storage. The data block can remain in the cache, but it is no longer considered modified.

Updates of R and C bits of the PTE are not required for this operation.

sdcrst CL, TG, TS, [EAH,] EAL

Note: All the bytes in the modified data block that contains the byte addressed by the effective address are
written to main storage, even if only one byte is modified. Doing so affects the state of other system caches,
including the SL1s and other atomic update facilities, as required by the coherency protocol of the system.

Implementation Note:

An SPE might implement an atomic update facility independent from the SL1 for the reservations created by
the getllar command. If so, the MFC sdcrtst command can affect the data present in this facility. If any byte
in the effective address range specified by this command is present and considered modified, the modified
data block is written to main storage.

7.7.5 SL1 Data Cache Range Flush Command

The SL1 data cache range flush (sdcrf) command causes a data block in the associated SL1 cache and any
other processor cache to be written to main storage when it meets the following conditions:

• The data block is in memory-coherence-required storage.
• The data block is considered modified.
• The data block is within the address range defined by the effective address and transfer size parameters.

All data blocks in the effective address range are invalidated.

If a data block in the associated SL1 cache is not in memory-coherence-required storage and is considered
modified, the sdcrf command writes the modified block of only the SL1 cache associated with the issuing
SPU to main storage. All data blocks in the effective address range are invalidated.

Updates of R and C bits of the PTE are not required for this operation.

sdcrf CL, TG, TS, [EAH,] EAL

Note: All the bytes in the modified data block that contains the byte addressed by the effective address are
written to system memory. Doing so affects the state of other system caches, including the SL1s and other
atomic update facilities, as required by the coherency protocol of the system.

Implementation Note:

An SPE might implement an atomic update facility independent from the SL1 for the reservations created by
the getllar command. If so, the MFC sdcrf command can affect the data present in this facility. If any byte in
the effective address range specified by this command is present and considered modified, the modified data
block is written to main storage and the data block is invalidated. If any byte is present and not considered
modified, the data block is also invalidated. Since the data block has not been modified, it does not need to
be written to main storage.
Version 1.02
October 11, 2007

MFC Commands

Page 69 of 358

User Mode Environment

Cell Broadband Engine Architecture
7.8 MFC Atomic Update Commands

There are four MFC atomic update commands: getllar, putllc, putlluc, and putqlluc. The getllar, putllc,
and putlluc MFC atomic update commands are performed without waiting for other commands in the MFC
SPU queue and thus have no associated tag. The MFC performs the atomic update operations independently
of any pending mfcsync, mfceieio, or barrier commands in the MFC SPU command queue. Software must
issue a read (rdch) from the MFC Read Atomic Command Status Channel (see page 137) after issuing each
atomic update command to verify completion of the command.

The MFC commands for get lock line and reserve (getllar) and put lock line conditional (putllc) are similar to
the PowerPC lwarx, ldarx, stwcx, and stdcx instructions for use in atomic updates. For interoperability
between the PowerPC instructions and the SPE commands, the PPE and SPE must have the same reserva-
tion granule size. A reservation granule is the number of bytes for which the reservation is held. The put lock
line unconditional (putlluc) command and the put queued lock line unconditional (putqlluc) command
perform a similar function to a cacheable store instruction in the PowerPC Architecture, conventionally used
by software to release a lock. The difference between the putlluc and putqlluc commands is that the
putqlluc command is tagged and queued behind other MFC commands in the MFC SPU command queue,
whereas the putlluc command is executed immediately. Because the putqlluc command is tagged and
creates a tag-specific fence, it is ordered with respect to all other commands in the same tag group already in
the MFC SPU command queue.

The getllar, putllc, and putlluc commands are executed immediately. However, these commands still
require an available slot in the MFC SPU command queue. No ordering with other commands in the MFC
SPU command queue should be assumed. After issuing each getllar, putllc, or putlluc command, software
must issue a read from the MFC Read Atomic Command Status Channel (see page 137) to verify completion
of the command.

All MFC atomic update commands must be issued to memory where the storage attributes are neither write
through required nor caching inhibited (W = ‘0’ and I = ‘0’). Issuing a getllar, putllc, putlluc, or putqlluc
command to memory where the storage attributes are write through required or caching inhibited (W = ‘1’ or
I = ‘1’) is undefined. This can cause the interrupt handler for a class 1 MFC interrupt to be invoked.

See the PowerPC Architecture, Book II for examples of the use of atomic updates. The MFC atomic update
commands can only be placed in the MFC SPU command queue by following the sequence described in
Section 9.2 MFC SPU Command Issue Sequence beginning on page 125.

Programming Note:

The storage attribute of memory coherence required does not have to be specified for memory that is
accessed by atomic operations. However, specifying the storage attribute of memory coherency required (M
= ‘1’) ensures that stores or puts from other PPEs, SPEs, or devices cause the reservation created by a
getllar command to be lost.

7.8.1 Get Lock Line and Reserve Command

A get lock line and reserve (getllar) command is similar to the PowerPC lwarx and ldarx instructions except
for the size of the data transfer and the destination of the data. The data transfer size of the getllar command
is a reservation granule (that is, an aligned unit of real storage). The data for the getllar command is placed
in local storage; the data for a lwarx or ldarx instruction is placed in a general purpose register (GPR).

The getllar CL, LSA, [EAH,] EAL command cannot be issued from the MFC proxy command queue.
MFC Commands

Page 70 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
Issuing the getllar command requires an available MFC SPU command queue slot. However, this command
is issued immediately, is not queued behind other commands, and has no associated tag. Therefore, it
executes independently of pending mfcsync, mfceieio, or barrier commands in the queue. An attempt to
issue this command before a previous getllar, putllc, or putlluc command has completed results in an error
(MFC command queue processing is halted, and an interrupt is sent to a PPE).

A read channel (rdch) of the MFC Read Atomic Command Status Channel (see page 137) must be
performed after issuing this command and before issuing another getllar, putllc, or putlluc command.

Privileged software must issue a putllc command to a privileged address to reset the reservation of an appli-
cation as part of an SPE context switch. Issuing a putllc command resets the reservation if a context switch
occurred after the getllar made a reservation but before the putllc used the reservation. This prevents the
resumed context from inadvertently using the reservation of the previous context if it was switched at a similar
point using the same address.

Software must avoid issuing successive getllar commands with the same effective address (having the same
reservation granule) without an intervening putllc command unless a random backoff technique is used to
avoid livelock situations. (A livelock is an endless loop in program execution.) A random backoff technique
provides a random amount of delay between issues of two or more successive getllar commands. A livelock
can occur during locking or barrier sequences such as test and set, compare and swap, or repeatedly polling
for a value to change, using the getllar command before performing an atomic update or another action.

Programming Note:

Avoid looping on getllar commands. This helps to prevent the starvation of writes or low-priority reads that
can result from back-to-back high-priority reads taking precedence in the arbitration scheme.

When using the atomic update sequence in a barrier or synchronization operation (such as compare and
swap or test and set), consider using the Lock Line Reservation Lost Event (see page 170) instead of repeat-
edly issuing the getllar command. Using this event allows the program to accomplish other tasks while
waiting for an external modification to the lock line data. If no other task is available, the programmer can
perform a read channel (rdch) from the SPU Read Event Status Channel (see page 153) to put the SPU into
low power state until the lock line data has been modified.

Note: When a reservation exists in the atomic unit, issuing another getllar command can cause the existing
reservation to be lost. The reservation is lost if the effective address of the getllar command is not within the
reservation granule of the existing reservation (that is, the effective address does not address a byte within
the group of bytes for the existing reservation). This can cause a reservation lost event for the previous reser-
vation. In addition, a context switch can cause a reservation lost event. A reservation lost event only specifies
that data within the reservation granule might have been modified.

7.8.2 Put Lock Line Conditional Command

A put lock line conditional (putllc) command is similar to the PowerPC stwcx. and stdcx. instructions except
for the size of the store conditional and the source of the data. The data transfer size of the putllc command
is a cache line. The data for the putllc command is read from the local storage; the data for an stwcx. or
stdcx. instruction is read from a GPR.

The putllc CL, LSA, [EAH,] EAL command cannot be issued from the MFC proxy command queue.
Version 1.02
October 11, 2007

MFC Commands

Page 71 of 358

User Mode Environment

Cell Broadband Engine Architecture
Issuing the putllc command requires an available MFC SPU command queue slot. However, this command
is issued immediately, is not queued behind other commands, and has no associated tag. Therefore, this
command executes independently of pending mfcsync, mfceieio, or barrier commands in the queue. An
attempt to issue this command before a previous getllar, putllc, or putlluc command has completed results
in an error (MFC command queue processing is halted, and an interrupt is sent to a PPE).

The putllc command is a conditional store operation. The store is not successful if no reservation for the
same address has been made, or if the reservation has been lost. A read channel (rdch) of the MFC Read
Atomic Command Status Channel (see page 137) is required to verify the completion of this command. An
SPU indefinite stall will result if the MFC Read Atomic Command Status Channel is read without the issuance
of a lock line MFC command.

7.8.3 Put Lock Line Unconditional Command

A put lock line unconditional (putlluc) command is similar to the putllc command, except that the store for
the putlluc is always performed. The putlluc command store is not dependent upon the existence of a previ-
ously made reservation. The data transfer size of the putlluc command is a cache line.

The putlluc CL, LSA, [EAH,] EAL command cannot be issued from the MFC proxy command queue.

Issuing the putlluc command requires an available MFC SPU command queue slot. However, this command
is issued immediately, is not queued behind other commands, and has no associated tag. Therefore, it
executes independently of pending mfcsync, mfceieio, or barrier commands in the queue. An attempt to
issue this command before a previous getllar, putllc, or putlluc command completes results in an error
(MFC command queue processing is halted, and the PPE is interrupted).

The putlluc command is a store operation. The store is not conditional on having acquired a reservation. A
read channel (rdch) of the MFC Read Atomic Command Status Channel (see page 137) is required to clear
the status of the operation. A read of the MFC Read Atomic Command Status Channel is also required to
verify the completion of this command. An SPU indefinite stall will result if the MFC Read Atomic Command
Status Channel is read without the issuance of a put lock line DMA command.

7.8.4 Put Queued Lock Line Unconditional Command

The put queued lock line unconditional (putqlluc) command is functionally equivalent to the put lock line
unconditional (putlluc) command. The difference between the two commands is the order in which the
commands are performed and how completion is determined. The putlluc command is performed immedi-
ately and the putqlluc command is placed into the MFC SPU command queue along with other MFC
commands.

The putqlluc CL, TG, LSA, [EAH,] EAL command cannot be issued from MFC proxy command queue.

No ordering is performed between the queued putqlluc command and the immediate getllar, putllc, or
putlluc commands. Thus, a putqlluc can execute before or after a subsequently issued or a previously
issued immediate atomic command (getllar, putllc, or putlluc). Therefore, do not assume any order of
execution with respect to immediate lock-line commands.

Because this command is queued, it executes independently of any pending immediate getllar, putllc, or
putlluc commands. To determine if the putqlluc command is complete, software must wait for tag-group
completion. See Section 9.3 MFC Tag-Group Status Channels beginning on page 126 for more information.
MFC Commands

Page 72 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
The putqlluc command contains a tag parameter and creates a tag-specific fence even though there is no
<f> modifier. The tag-specific fence created by the putqlluc command prevents this command from being
issued until all previously issued commands with the same tag have completed. Unlike the immediate form of
this command, multiple putqlluc commands can be issued and pending in the DMA command queue. All the
MFC command queue ordering rules apply to the putqlluc command.

This command is a store operation. The store is not conditional on having acquired a reservation.

Programming Note:

The put queued lock line unconditional (putqlluc) command allows software to queue the release of a lock
behind the commands accessing storage associated with the lock. For proper operation, the putqlluc
command must be within the same tag group as the commands accessing the associated storage or other
ordering commands must be used. In addition, either mfceieio or mfcsync commands must also be used (as
appropriate).

7.9 MFC Synchronization Commands

MFC synchronization commands control the order in which storage accesses are performed with respect to
other MFCs, processors, and other devices.

Many commands support the embedded tag-specific fence modifier, or barrier modifier. The notation <f,b>
indicates that either the tag-specific fence or tag-specific barrier form is available. The tag-specific fence, <f>,
ensures that this command is ordered with respect to all preceding commands in the DMA command queue
within the same tag group. Any subsequent command with the same tag ID that is not a fence or barrier, or
any command within a different tag group, can be performed out-of-order with respect to this command or
previously-issued commands. The tag-specific barrier, , ensures that this command and all subsequent
commands within the same tag group as this command are ordered with respect to all preceding commands
in the DMA command queue within the same tag group. This command and all subsequent commands with
the same tag ID as this command will not be performed out-of-order with respect to all preceding commands
with the same tag ID as this command. Once all previously-issued commands with the same tag ID as this
command have been performed, this command and subsequent commands can be performed. The order in
which these subsequent commands are performed is determined by subsequent fence and barrier form
commands. Commands with a fence or barrier are not ordered with respect to subsequent commands.

The fence and barrier modifiers also provide stronger consistency of storage accesses in the weakly consis-
tent storage model of the CBEA for several combinations of storage accesses involving commands in the
same tag group. Thus, programmers do not need to add additional synchronization commands for these
specific combinations if the commands are in the same tag group and either the fence or barrier modifier is
used. The following DMA combinations require no additional synchronization commands to provide an
ordering function when both commands access storage that has the same storage attributes:

• Same tag group put(l) type command or sdcrz command followed by a put(l) type command with either
the fence <f> or the barrier modifier or by an sdcrz command

• Same tag group put(l) type command or sdcrz command followed by a get(l) type command with either
the fence <f> or the barrier modifier

• Same tag group get(l) type command followed by a get(l) type command with either the fence <f> or the
barrier modifier
Version 1.02
October 11, 2007

MFC Commands

Page 73 of 358

User Mode Environment

Cell Broadband Engine Architecture
• Same tag group get(l) type command followed by a put(l) type command with either the fence <f> or the
barrier modifier or by an sdcrz command

If the storage accesses between two MFC DMA commands that access storage with different storage
attributes need to be strongly ordered with respect to other processors, MFCs, and devices, an mfcsync or
mfceieio command must be issued between the commands to provide the required ordering function. In
addition, the two MFC DMA commands and the mfcsync command must all be in the same tag group. For
more information on the use of mfcsync and mfceieio, see Section 10.2 Main Storage Domain Access
Ordering on page 177.

Implementation Note:

The CBEA specifies that the fence and barrier modifiers provide stronger storage access consistency for
some combinations of DMA commands. The following items explain how the ordering rules for DMA
command storage access relate to the PowerPC ordering rules:

• A put(l) type command or an sdcrz command followed by a put(l) type command with either the fence
<f> or barrier modifier or by an sdcrz command, where the storage attributes are memory coher-
ence required and neither write through required nor caching inhibited, has a storage order effect at least
as strong as two stores on a PPE separated by a lwsync instruction.

• A get(l) type command followed by a get(l) type command with either the fence <f> or barrier modi-
fier, where the storage attributes are memory coherence required and neither write through required nor
caching inhibited, has a storage order effect at least as strong as two loads on a PPE separated by a
lwsync instruction.

• A put(l) type command or an sdcrz command followed by a put(l) type command with either the fence
<f> or barrier modifier or by an sdcrz command, where the storage attributes are caching inhibited,
has a storage order effect at least as strong as two stores on a PPE separated by a sync instruction.

• A get(l) type command followed by a get(l) type command with either the fence <f> or barrier modi-
fier, where the storage attributes are caching inhibited and not guarded, has a storage order effect at
least as strong as two loads on a PPE separated by a sync instruction.

• A get(l) type command followed by a get(l) type command with either the fence <f> or barrier modi-
fier, where the storage attributes are caching inhibited and guarded, has a storage order effect at least as
strong as two loads on a PPE separated by an eieio instruction.

• A put(l) type command or an sdcrz command followed by a get(l) type command with either the fence
<f> or barrier modifier, where the storage attributes are caching inhibited and not guarded, has a
storage order effect at least as strong as a store followed by a load on a PPE separated by a sync
instruction.

• A get(l) type command followed by a put(l) type command with either the fence <f> or barrier modi-
fier or by an sdcrz command, where the storage attributes are memory coherence required and neither
write through required nor caching inhibited, has a storage order effect at least as strong as a load fol-
lowed by a store on a PPE separated by a lwsync instruction.

• A get(l) type command followed by a put(l) type command with either the fence <f> or barrier modi-
fier or by an sdcrz command, where the storage attributes are caching inhibited and not guarded, has a
storage order effect at least as strong as a load followed by a store on a PPE separated by a sync
instruction.

• A get(l) type command followed by a put(l) type command with either the fence <f> or barrier mod-
ifier or by an sdcrz command, where the storage attributes are caching inhibited and guarded, has a stor-
MFC Commands

Page 74 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
age order effect at least as strong as a load followed by a store on a PPE separated by an eieio
instruction.

• A put(l) type command or an sdcrz command followed by a put(l) type command with either the fence
<f> or barrier modifier or by an sdcrz command, where the storage attributes are caching inhibited
and guarded, are always performed in program order with respect to any processor or mechanism.

An example of the use of a fence modifier is when multiple MFC DMA commands are needed to load an SPU
program and to start its execution. In this example, one MFC DMA command is used to load the data
segment. A second MFC DMA command with both the SPU start “s” and the tag-specific fence <f> modifiers
is used to load text data. As long as the two commands have the same tag ID, the fence ensures that the load
of the data segment is completed before loading the text data and before starting the SPU program execu-
tion. Without the fence, the second MFC DMA command could complete and could start the SPU program
before the data segment is loaded.

An example of the use of a barrier modifier is when a read of a buffer takes multiple commands and must be
performed before writing the buffer, which also takes multiple commands. In this example, the commands to
read the buffer can be queued and performed in any order. Using the barrier modifier for the first command to
write the buffer allows the commands used to write the buffer to be queued without waiting for the MFC tag-
group status update event on the read commands. (The barrier modifier is only required for the first buffer
write command.) As long as the buffer read and buffer write commands have the same tag ID, the barrier
ensures that the buffer is not written before being read. If multiple commands are used to read and write the
buffer, using the barrier option allows the read commands to be performed in any order and the write
commands to be performed in any order. This provides better performance but forces all reads to finish
before the writes start.

7.9.1 MFC Synchronize Command

An MFC synchronize (mfcsync) command is similar in operation to the PowerPC sync instruction.

mfcsync TG

This command is used to control the order in which DMA commands within this tag group are executed with
respect to other processors and devices to the extent required by the associated memory-coherence-
required attributes.1 The mfcsync command creates a tag-specific barrier even though there is no modi-
fier. This means that the mfcsync command and all subsequent commands in the same tag group are
ordered with respect to all previous commands in the queue with the same tag ID. The ordering done by the
mfcsync command for main storage accesses is cumulative in the main storage domain. However, the
ordering is not cumulative with respect to other local storage domains. The MFC Multisource Synchronization
Register (see page 109) defines a facility to achieve cumulative ordering across the other local storage and
main storage domains.

For main storage with certain storage attributes, the mfceieio command is used to control the order in which
DMA commands within the same tag group are executed with respect to other processors and devices.
These main storage accesses are divided into the following two sets, which are ordered separately:

1. The phrase “to the extent required by the associated memory-coherence-required attributes” refers to the memory-coher-
ence-required attribute, if any, associated with each main storage access. This phrase does not apply to storage accesses
in the local storage domain.
Version 1.02
October 11, 2007

MFC Commands

Page 75 of 358

User Mode Environment

Cell Broadband Engine Architecture
1. The mfceieio command orders put(l), sdcrz, and get(l) commands to main storage that is both caching
inhibited and guarded. It also orders get(l) commands to main storage that is write through required. The
ordering done by the mfceieio command for main storage accesses in this set is not cumulative.

2. The mfceieio command orders put(l) or sdcrz commands to main storage that is memory coherence
required and is neither write through required nor caching inhibited. The ordering done by the mfceieio
command for main storage accesses in this set is cumulative in the main storage domain. However, the
ordering is not cumulative with respect to other local storage domains. The MFC Multisource Synchroni-
zation Register (see page 109) defines a facility to achieve cumulative ordering across the other local
storage and main storage domains.

Programming Note:

To obtain the best performance across the widest range of implementations, the programmer should use
either the barrier command, the fence <f> or barrier modifiers, or the mfceieio command if any of these
are sufficient for the ordering needs.

7.9.2 MFC Enforce In Order Execution of I/O Command

An MFC enforce in-order execution of I/O (mfceieio) command is similar in operation to the PowerPC eieio
instruction.

mfceieio TG

This command is used to control the order in which DMA commands within this tag group are executed with
respect to other processors and devices to the extent required by the associated memory-coherence-
required attributes.1 The mfceieio command creates a tag-specific barrier even though there is no modi-
fier. This means that the mfceieio command and all subsequent commands in the same tag group are
ordered with respect to all previous commands in the queue with the same tag ID.

Programming Note:

This command is intended for use in managing shared data structures, in performing memory-mapped I/O,
and in preventing load and store combining in system memory. To obtain the best performance across the
widest range of implementations, the programmer should use either a fence or barrier form of a command, or
if neither of these is sufficient for ordering, the mfceieio command.

7.9.3 Barrier Command

A barrier command orders all subsequent commands with respect to all commands preceding the barrier
command in the DMA command queue, independent of tag group IDs. The get<f,b>, getl<f,b>, put<f,b>,
and putl<f,b> commands have an embedded form of fence or barrier that only affects commands within the
same tag group.

barrier TG

1. The phrase “to the extent required by the associated memory-coherence-required attributes” refers to the memory-coher-
ence-required attribute, if any, associated with each main storage access. This phrase does not apply to storage accesses
in the local storage domain.
MFC Commands

Page 76 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
The barrier command is not tag-specific. The specified tag can be used to determine when the command is
complete. The barrier command does not complete until all preceding commands in the queue are complete.
Subsequent commands in the queue begin when the barrier command completes.

The barrier command has the same storage access ordering properties independent of the tag group as the
embedded fence or barrier modifier for commands in the same tag group.

7.9.4 Send Signal Command

A send signal (sndsig) command logically sets signal bits in the targeted signal notification register. The
targeted signal notification register is specified by the effective address. The data used to update the signal
notification register is the data from the location specified by the local storage address.

This operation is always a 4-byte operation, and the transfer size (TS) parameter must be set to four.

sndsig CL, TG, TS, LSA, [EAH,] EAL

The sndsig command is normally used to signal events between SPEs, between PPEs and SPEs, or
between SPEs and I/O devices. Each SPE has two signal notification registers that can be targeted by this
command. A PPE has no signal control registers. It can only initiate signals by using the sndsig command.
I/O devices can initiate signals by using the sndsig command; optionally, I/O devices can also have signal
control registers.

The signal notification registers can be programmed for overwrite mode or logical OR mode. For more infor-
mation, see Section 16.4 SPU Configuration Register beginning on page 245. In overwrite mode, the
contents of the signal notification register are replaced with the signal information set by this command. This
mode is useful in a one-to-one signalling environment. In the logical OR mode, the contents of the signal noti-
fication register are logically ORed with the signal information set by this command. This mode is useful in a
many-to-one signalling environment.

A processor that overwrites the signal notification register data does not have hardware protection. When the
signal control register is read locally by the signal control owner, any signal bits that are set are reset. Any
remote (nonowner) read of these signal control registers returns the current state of the signal control register
but does not result in a reset. SPUs read and reset signal control registers through SPU channels.

MMIO addresses are provided for PPEs or I/O devices to issue the sndsig command to a specified signal
notification register. The PPEs can also set or clear the signal control registers of SPEs to establish the
context through the SPU channel access facility.

An SPE that receives a sndsig operation must guarantee that all store operations sent to the local storage
from a single source are complete before depending on the data associated with the sndsig operation.
The MFC multisource synchronization facility (see page 108) must be used to ensure that stores from
multiple sources are complete.

Implementation Note:

The sndsig command can be implemented as a put command.
Version 1.02
October 11, 2007

MFC Commands

Page 77 of 358

User Mode Environment

Cell Broadband Engine Architecture
7.9.5 Send Signal with Fence or with Barrier Command

The send signal with fence or with barrier (sndsig<f,b>) command is similar to the sndsig command.
However, the sndsig<f,b> command provides local ordering with respect to other commands within the
same tag group (that is, commands with the same tag ID).

sndsigf CL, TG, TS, LSA, [EAH,] EAL
sndsigb CL, TG, TS, LSA, [EAH,] EAL

Implementation Note:

The sndsig<f,b> command can be implemented as a put<f,b> command.
MFC Commands

Page 78 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8. Problem-State Memory-Mapped Registers

The problem-state (PS) memory-mapped registers define the set of facilities that an application running in
problem state can access. An application is in problem state when MSR[PR] = '1' for a PowerPC Processor
Element (PPE) or when MFC_SR1[PR] = '1' for a Synergistic Processor Element (SPE). Each SPE has a
complete set of the registers as described in this section. The access privileges for each SPE are indepen-
dent because the registers are allocated in different real address pages. Access to these registers is
controlled by privileged software when mapping the corresponding address into the effective address of an
application in the page table.

If an SPE is used as a privileged resource (that is, when MFC_SR1[PR] = '0'), access to these registers
should also be marked as privileged. For more information about access privileges, see PowerPC Architec-
ture, Book III.

The Cell Broadband Engine Architecture (CBEA) is flexible enough that, with proper settings in the page
table, the problem-state memory-mapped registers listed in Table 8-1 can be managed by PPEs, by other
processors, or by other SPEs.

In the leftmost column of Table 8-1, the offset is relative to a starting location. That starting location is calcu-
lated using an implementation-dependent base address register (BP_Base), an SPE number, the problem-
state area for an SPE, and so forth, as defined in Table A-1 CBEA-Compliant Processor Memory Map on
page 294. See Table A-1 for the mapping of all the registers defined by the Cell Broadband Engine Architec-
ture in the real address space. For the reader’s convenience, Table A-2 SPE Problem State Memory Map on
page 296 duplicates Table 8-1 below.

Table 8-1. SPE Problem-State Memory Map (Page 1 of 2)

Offset
(Hexadecimal) Register Description Access Type

Multisource Synchronization Area

x‘00000’ MFC_MSSync MFC Multisource Synchronization Register (see page 109) Read/Write

Memory Flow Controller (MFC) Proxy Command Parameter Area

x‘03000’ Reserved Reserved for future expansion Reserved

x‘03004’ MFC_LSA MFC Local Storage Address Register (see page 85)1 Write Only

x‘03008’ MFC_EAH MFC Effective Address High Register (see page 86)1 Write Only

x‘0300C’ MFC_EAL MFC Effective Address Low Register (see page 87)1 Write Only

x‘03010’

MFC_Size MFC Transfer Size Register (see page 84)1, 2
(Upper 16 bits of register). Write Only

MFC_Tag MFC Command Tag Register (see page 83)1, 2
(Lower 16 bits of register) Write Only

x‘03014’

MFC_ClassID MFC Class ID Register (see page 82)1, 3
(Upper 16 bits of register for write) Write Only

MFC_Cmd MFC Command Opcode Register (see page 81)1, 2
(Lower 16 bits of register for write) Write Only

MFC_CMDStatus MFC Command Status Register (see page 90)(all 32 bits for read) Read Only

1. Reading of these registers should be allowed for diagnostic purposes.
2. Both the MFC_Size and MFC_TAG registers must be written with a single 32-bit store instruction.
3. Both the MFC_ClassID and MFC_Cmd registers must be written with a single 32-bit store instruction.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 79 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.1 MFC Proxy Command Parameter Registers

The following subsections describe the MFC proxy command parameter registers:

• Section 8.1.1 MFC Command Opcode Register beginning on page 81

• Section 8.1.2 MFC Class ID Register beginning on page 82

• Section 8.1.3 MFC Command Tag Register beginning on page 83

• Section 8.1.4 MFC Transfer Size Register beginning on page 84

• Section 8.1.5 MFC Local Storage Address Register beginning on page 85

• Section 8.1.7 MFC Effective Address Low Register beginning on page 87

• Section 8.1.6 MFC Effective Address High Register beginning on page 86

MFC Proxy Status and Command Queue Control Area

x‘03020’:x‘030FF’ Reserved Reserved

x‘03104’ MFC_QStatus MFC Queue Status Register (see page 91) Read Only

x‘03204’ Prxy_QueryType Proxy Tag-Group Query Type Register (see page 93) Read/Write

x‘0321C’ Prxy_QueryMask Proxy Tag-Group Query Mask Register (see page 94) Read/Write

x‘0322C’ Prxy_TagStatus Proxy Tag-Group Status Register (see page 95) Read Only

x‘03330’:x‘03FFF’ Reserved Reserved

Synergistic Processor Unit (SPU) Control Area

x‘04004’ SPU_Out_Mbox SPU Outbound Mailbox Register (see page 102) Read Only

x‘0400C’ SPU_In_Mbox SPU Inbound Mailbox Register (see page 103)1 Write Only

x‘04014’ SPU_Mbox_Stat SPU Mailbox Status Register (see page 104) Read Only

x‘0401C’ SPU_RunCntl SPU Run Control Register (see page 96) Read/Write

x‘04024’ SPU_Status SPU Status Register (see page 97) Read Only

x‘04034’ SPU_NPC SPU Next Program Counter Register (see page 99) Read/Write

x‘04038’:x‘13FFF’ Reserved Reserved

Signal-Notification Area

x‘1400C’ SPU_Sig_Notify_1 SPU Signal Notification 1 Register (see page 106) Read/Write

x‘14010’:x‘1BFFF’ Reserved Reserved

x‘1C00C’ SPU_Sig_Notify_2 SPU Signal Notification 2 Register (see page 107) Read/Write

x‘1C010’:x‘1FFFF’ Reserved Reserved

Table 8-1. SPE Problem-State Memory Map (Page 2 of 2)

Offset
(Hexadecimal) Register Description Access Type

1. Reading of these registers should be allowed for diagnostic purposes.
2. Both the MFC_Size and MFC_TAG registers must be written with a single 32-bit store instruction.
3. Both the MFC_ClassID and MFC_Cmd registers must be written with a single 32-bit store instruction.
Problem-State Memory-Mapped Registers

Page 80 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.1.1 MFC Command Opcode Register (MFC_Cmd)

The MFC Command Opcode Register determines the operation to be performed. The validity of the opcode is
checked asynchronously to the instruction stream. If the MFC proxy command or any of its parameters are
invalid, MFC proxy command queue processing is suspended. If the interrupt is enabled, an invalid MFC
command interrupt is sent. For more information about interrupts, see Section 21 Interrupt Facilities begin-
ning on page 261.

Software must avoid programming practices that enqueue commands with forward dependencies on
commands that are enqueued later. Software with this type of dependency can create a deadlock, because of
the number of available slots in the MFC proxy command queues. In addition, while queue depth is imple-
mentation dependent, software must not be written to require a specific queue depth.

Software can determine the number of queue slots available in the MFC proxy command queue by reading
the MFC Queue Status Register (see page 91). The value returned is the number of available queue slots.
Software can use this value to avoid repeating the queuing sequence for a full MFC proxy command queue.

Section 8.2 MFC Proxy Command Issue Sequence on page 88 describes the queuing sequence for MFC
proxy commands.

Access Type MMIO: Read1/Write

Note: The MFC Command Opcode Register must be written to the MFC proxy command queue along with
the MFC Class ID Register using a single 32-bit store instruction. The MFC Command Opcode Register is the
lower 16 bits of the 32-bit word. The upper 8 bits of the MFC Command Opcode field are reserved. If the MSb
(that is, bit 0 of this field) is set to ‘1’, the proxy command is reserved and can be used for an implementation-
dependent function.

Programming Note:

The total number of queue slots is implementation dependent and varies between implementations. For port-
ability of an application, the queuing sequence for MFC proxy commands and the method to determine the
number of queue slots available should be provided as a macro or as a library function that uses a configura-
tion-dependent method for queuing commands.

1. When read, this register returns the value in the MFC Command Status Register (see page 90).

Base Address Offset (BP_Base | PS(n)) + x‘03014’; where n is an SPE number (lower 16 bits).

Reserved MFC CMD Opcode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Field Name Description

0:7 Reserved Should be set to zeros. If bit 0 is set to ‘1’, the opcode is reserved.

8:15 MFC CMD Opcode MFC proxy command opcode.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 81 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.1.2 MFC Class ID Register (MFC_ClassID)

The MFC Class ID Register is used to specify the replacement class ID and the transfer class ID for each
MFC proxy command. Software can use these IDs to improve the overall performance of the system.

The transfer class ID (TclassID) lets an implementation optimize MFC proxy command transfers based on the
characteristics of the storage location. The replacement class ID (RClassID) lets an implementation influence
cache replacement. For more information on the replacement class ID, see Section 19 Cache Replacement
Management Facility on page 255. The exact function and mapping of the replacement class ID and the
transfer class ID are implementation dependent. For more information on setup and use of these IDs, see the
specific implementation documentation.

The MFC class ID performs the same function for commands that are issued to the MFC SPU command
queue or to the MFC proxy command queue. Thus, its function is queue independent. For example, the
RclassID affects which set in the translation lookaside buffer (TLB) is available to be replaced. The RClassID
is a pointer into the replacement management table (RMT), which is shared between queues. Since the RMT
is shared and the TLB is shared, the class ID is independent of the queue to which the command was issued.
(A parameter such as the Tag parameter, on the other hand, is queue specific).

The contents of the MFC Class ID Register are not persistent and must be written for each MFC proxy
command queuing sequence.

The validity of the MFC Class ID Register is not verified. The number of class IDs supported is implementa-
tion dependent. The default class ID (x‘00’) is used for all undefined or invalid class IDs. An invalid class ID
parameter does not generate an interrupt.

Access Type MMIO: Read1/Write

Note: The MFC Class ID Register must be written along with the MFC Command Opcode Register (see
page 81) using a single 32-bit store instruction. The MFC proxy command parameter is the lower 16 bits of a
32-bit word. The MFC class ID parameter is the upper 16 bits of the 32-bit word.

1. When read, this register returns the value in the MFC Command Status Register (see page 90).

Base Address Offset (BP_Base | PS(n)) + x‘03014’; where n is an SPE number (upper 16 bits).

TclassID RclassID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Field Name Description

0:7 TclassID Transfer class identifier.

8:15 RclassID Replacement class identifier.
Problem-State Memory-Mapped Registers

Page 82 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.1.3 MFC Command Tag Register (MFC_Tag)

The MFC Command Tag Register is used to specify an identifier for each proxy command or group of proxy
commands. The tag can be any value between x‘0’ and x‘1F’. Tags have a purely local scope in the hard-
ware.

Any number of MFC proxy commands can be tagged with the same identification. MFC proxy commands
tagged with the same ID are called a tag group. Tags are associated with commands written to a specific
queue. Tags supplied to the MFC proxy command queue are independent of tags supplied to the MFC SPU
command queue.

The contents of the MFC Command Tag Register are not persistent and must be written for each MFC proxy
command queuing sequence.

The validity of this register is checked asynchronously to the instruction stream. If the upper bits (bits 0
through 10) are not set to zeros, the proxy command queue processing is suspended. If the interrupt is
enabled, an invalid MFC proxy command interrupt is sent. For more information, see Section 21 Interrupt
Facilities beginning on page 261.

Note: Software must write the MFC Command Tag Register for each command, even if the command does
not support this parameter. Even though it is written, the tag is not used if the command does not support this
parameter. For future compatibility, software should set the MFC proxy command tag to zero for all com-
mands that do not support the MFC proxy command tag.

Access Type MMIO: Write Only1

Note: The MFC Command Tag Register must be written along with the MFC Transfer Size Register (see
page 84) using a single 32-bit store instruction. The MFC Command Tag parameter is the lower 16 bits of the
32-bit value written to the base address offset.

1. An implementation should support read access to this facility for diagnostic purposes.

Base Address Offset (BP_Base | PS(n)) + x‘03010’; where n is an SPE number (lower 16-bit).

Reserved MFC Command Tag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Field Name Description

0:10 Reserved Set to zeros.

11:15 MFC Command Tag MFC proxy command tag.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 83 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.1.4 MFC Transfer Size Register (MFC_Size)

The MFC Transfer Size Register is used to specify the size of an MFC transfer. The transfer size value can
be 0, 1, 2, 4, 8, 16, or a multiple of 16 bytes to a maximum of 16 KB. The contents of the MFC Transfer Size
Register are not persistent and must be written for each MFC proxy command enqueue sequence.

The validity of this register is checked asynchronously to the instruction stream. If the size is invalid, the MFC
proxy command queue processing is suspended. If the interrupt is enabled, an MFC direct memory access
(DMA) alignment interrupt is sent. For more information about interrupts, see Section 21 Interrupt Facilities
beginning on page 261.

Access Type MMIO: Write Only1

Note: The MFC Transfer Size Register must be written along with the MFC Command Tag Register using a
single 32-bit store instruction. The MFC Transfer Size Register is the upper 16 bits of the 32-bit value written
to the base address offset.

Programming Note:

Typically, systems are more efficient when they perform transfers of a cache line or multiple cache lines.
Excessive use of small transfers (less than a cache line) can result in poor bus and memory bandwidth utiliza-
tion. In addition, when transferring multiple quadwords, better performance can typically be achieved when
the effective address and local storage address are both aligned within the cache line. For example, if the
cache line size is 128-bytes, optimal performance can be achieved when bits 25 through 27 of the 32-bit local
storage address are equal to bits 57 thorough 59 of the 64-bit effective address. The lower 4 bits of the effec-
tive address and local storage address must be zero for quadword transfers.

The method that an application uses to determine the cache line size of the processor is implementation
dependent. For more information, see the specific implementation documentation and software interface
specifications.

1. An implementation should support read access to this facility for diagnostic purposes.

Base Address Offset (BP_Base | PS(n)) + x‘03010’; where n is an SPE number (upper 16 bits).

R
es

er
ve

d

MFC Transfer Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Field Name Description

0 Reserved Set to zeros.

1:15 MFC Transfer Size

MFC transfer size.
Allowable MFC transfer sizes follow:

• 0, 1, 2, 4, and 8 bytes (naturally aligned), where the source and destination address must have
the same 4 least-significant bits (see Table 7-6 Command Errors and Alignment Errors on
page 61 for more information).

• 16 bytes and multiples of 16 bytes up to 16 KB, where the source and destination addresses
must be 16-byte (quadword) aligned.
Problem-State Memory-Mapped Registers

Page 84 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.1.5 MFC Local Storage Address Register (MFC_LSA)

The MFC Local Storage Address Register is used to supply the SPU local storage address associated with
an MFC proxy command to be queued. This address is used as the source or destination of the MFC transfer
as defined in the MFC proxy command. For more information, see Section 7 MFC Commands beginning on
page 55.

The contents of the MFC Local Storage Address Register are not persistent and must be written for each
MFC proxy command queuing sequence.

The validity of this register is checked asynchronously to the instruction stream.

To be considered aligned, the 4 least-significant bits of the local storage address must match the least-signif-
icant 4 bits of the effective address. If the address is unaligned, the processing for both command queues is
suspended. If the interrupt is enabled, an MFC DMA alignment interrupt is sent. For more information about
interrupts, see Section 21 Interrupt Facilities beginning on page 261.

Access Type MMIO: Write Only1

Programming Note:

Typically, systems are more efficient when they perform transfers of a cache line or multiple cache lines.
Excessive use of small transfers (less than a cache line) can result in poor bus and memory bandwidth utiliza-
tion. In addition, when transferring multiple quadwords, better performance can typically be achieved when
the effective address and local storage address are both aligned within the cache line. For example, if the
cache line size is 128-bytes, optimal performance can be achieved when bits 25 through 27 of the 32-bit local
storage address are equal to bits 57 thorough 59 of the 64-bit effective address. The lower 4 bits of the effec-
tive address and local storage address must be zero for quadword transfers.

The method that an application uses to determine the cache line size of the processor is implementation
dependent. For more information, see the specific implementation documentation and software interface
specifications.

1. An implementation should support read access to this facility for diagnostic purposes.

Base Address Offset (BP_Base | PS(n)) + x‘03004’; where n is an SPE number.

MFC Local Storage Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 MFC Local Storage
Address

MFC local storage address.
Note: The 4 least-significant bits of the local storage address must match the least-significant 4 bits
of the effective address.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 85 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.1.6 MFC Effective Address High Register (MFC_EAH)

The MFC Effective Address High Register is used to specify the upper 32 bits of the 64-bit effective address
for the MFC proxy command.1 If translation is enabled in MFC State Register One (that is, MFC_SR1[R] is
set to ‘1’), effective addresses are translated into real addresses by the memory management unit (MMU)
address translation mechanism (for more information, see PowerPC Architecture, Book III). If translation is
disabled (the effective address equals the real address), the number of lower effective address bits that are
valid is implementation dependent. For more information, see the specific implementation documentation.

The contents of the MFC Effective Address High Register are not persistent and must be written for each
MFC proxy command enqueue sequence.

This parameter is optional. If the effective address high (EAH) is not written, then the hardware sets the EAH
parameter to zero (that is, the address is between 0 and 232-1).

The validity of this parameter is checked asynchronously to the instruction stream. If the address is invalid
(for example, due to a segment fault, a mapping fault, or a protection violation), processing of the MFC proxy
command is suspended. An interrupt, if enabled, is sent. Processing of other commands in the queue
continues if possible, subject to any fence or barrier commands.

The following types of interrupts can be sent:

• If a segment fault occurs, an MFC data-segment interrupt is sent.
• If a mapping fault or a page protection violation occurs, an MFC data-storage interrupt is sent.

For more information about interrupts, see Section 21 Interrupt Facilities beginning on page 261.

Note: The validity of the effective address can be checked during transfers. Partial transfers can be per-
formed before an invalid address is encountered and the exception is generated.

Access Type MMIO: Write Only2

1. The effective address can be written using either one 64-bit store or two 32-bit stores. If written using 32-bit stores, the EAH
must be written first. In general, 64-bit access to an address range that includes a 32-bit MMIO register is not allowed
except when specified explicitly as in this instance.

2. An implementation should support read access to this facility for diagnostic purposes.

Base Address Offset (BP_Base | PS(n)) + x‘03008’; where n is an SPE number.

High Word of 64-Bit Effective Address (Optional)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31
High Word of 64-Bit
Effective Address

(Optional)

High word of the 64-bit effective address.
• EAH is optional. If not written, zeros are used for the upper 32 bits of the 64-bit effective

address.
• If translation is disabled, the number of lower effective address bits that are valid is implemen-

tation specific. The remaining upper bits are required to be zero.
Problem-State Memory-Mapped Registers

Page 86 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.1.7 MFC Effective Address Low Register (MFC_EAL)

The MFC Effective Address Low Register is used to specify the lower 32 bits of the 64-bit effective address
for the MFC proxy command.1 If translation is enabled in the MFC State Register One (that is, MFC_SR1[R]
is set to ‘1’), effective addresses are translated into real addresses by the MMU address translation mecha-
nism (for more information, see PowerPC Architecture, Book III). If translation is disabled, the 64-bit address
formed by MFC_EAH ⎢⎢MFC_EAL must be a supported address within the real address space of main
storage. Handling of unsupported addresses is implementation dependent. For more information about the
real address space of an implementation, see the specific implementation documentation.

The contents of the MFC Effective Address Low Register are not persistent and must be written for each MFC
proxy command enqueue sequence.

For transfer sizes less than 16 bytes, MFC_EAL bits 28 through 31 must provide natural alignment based on
the transfer size. For transfer sizes of 16 bytes or greater, bits 28 through 31 must be zeros. In addition to
these limitations, bits 28 through 31 must match bits 28 through 31 of the MFC_LSA. If any of these condi-
tions are not met, the MFC_EAL parameter is considered unaligned and is invalid.

The validity of this parameter is checked asynchronously to the instruction stream. If the address is invalid
(for example, due to a segment fault, a mapping fault, a protection violation, or an alignment error),
processing of the MFC proxy command is suspended. An interrupt, if enabled, is sent. Processing of other
commands in the queue continues if possible, subject to any fence or barrier commands.

The following types of interrupts can be sent:

• If a segment fault occurs, an MFC data segment interrupt is sent.
• If a mapping fault or a page protection violation occurs, an MFC data-storage interrupt is sent.
• If the address is not aligned, a DMA alignment interrupt is sent.

For more information about interrupts, see Section 21 Interrupt Facilities beginning on page 261.

Notes:

• The validity of the effective address can be checked during transfers. Partial transfers can be performed
before an invalid address is encountered and the exception is generated.

• For optimal performance of transfers of 128 bytes or more, the source and destination transfer address
should be 128-byte aligned (bits 25 through 31 set to 0).

1. The effective address can be written using either one 64-bit store or two 32-bit stores. If written using 32-bit stores, the EAH
must be written first. In general, 64-bit access to an address range that includes a 32-bit MMIO register is not allowed
except when specified explicitly as in this instance.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 87 of 358

User Mode Environment

Cell Broadband Engine Architecture
Access Type MMIO: Write Only1

Programming Note:

Typically, systems are more efficient when they perform transfers of a cache line or multiple cache lines.
Excessive use of small transfers (less than a cache line) can result in poor bus and memory bandwidth utiliza-
tion. In addition, when transferring multiple quadwords, better performance can typically be achieved when
the effective address and local storage address are both aligned within the cache line. For example, if the
cache line size is 128-bytes, optimal performance can be achieved when bits 25 through 27 of the 32-bit local
storage address are equal to bits 57 thorough 59 of the 64-bit effective address. The lower 4 bits of the effec-
tive address and local storage address must be zero for quadword transfers.

The method that an application uses to determine the cache line size of the processor is implementation
dependent. For more information, see the specific implementation documentation and software interface
specifications.

8.2 MFC Proxy Command Issue Sequence

The CBEA requires software to follow a particular sequence to enqueue an MFC proxy command. If the
correct sequence is not followed, an MFC proxy command is not queued and an invalid command sequence
is posted in the MFC Command Status Register (see page 90) (that is, MFC_CMDStatus[RC] = '01' or '11').

The MFC Command Parameter Registers must be written in increasing address order. To enqueue an MFC
proxy command from a PPE, the MFC parameters must first be written to the MFC proxy command address
space in the following sequence:

1. Set the local storage address.

2. Set the MFC effective address.2

1. An implementation should support read access to this facility for diagnostic purposes.

Base Address Offset (BP_Base | PS(n)) + x‘0300C’; where n is an SPE number.

Low Word of 64-bit Effective Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Low Word of 64-bit
Effective Address

Low word of the 64-bit effective address.
For transfer sizes less than 16 bytes, address bits 28 through 31 must provide natural alignment
based on the transfer size. For transfer sizes of 16 bytes or greater, bits 28 through 31 must be
zeros.
If translation is disabled (the effective address equals the real address), some higher-order bits
must also be zero, depending on the amount of real memory in the system.

2. The effective address can be written using either one 64-bit store or two 32-bit stores. If written using 32-bit stores, the EAH
must be written first. In general, 64-bit access to an address range that includes a 32-bit MMIO register is not allowed
except when specified explicitly as in this instance.
Problem-State Memory-Mapped Registers

Page 88 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
3. Set the MFC size and the MFC tag.1

4. Set the transfer class and replacement management class IDs and the MFC proxy command.1

5. Read the MFC proxy command status.2

Reading the MFC proxy command status causes an attempt to enqueue the specified command and its
parameters.

6. Restart the MFC proxy command issue sequence, starting at step 1, if the status indicates failure or if
there is no slot available in the MFC proxy command queue.

These parameters are held in the corresponding registers. The read of the MFC proxy command status
causes the data held in these registers to be enqueued, if the sequence has not been interrupted and if there
is a slot in the MFC proxy command queue.

Implementation Note:

When the local storage address is set in step 1, hardware should set an internal state bit, CMD_Pending. This
bit indicates that a command is pending for the queue. The CMD_Pending bit is reset if the required
sequence for enqueuing an MFC proxy command is not followed.3 An MFC proxy command fails if the
CMD_Pending bit is reset when the MFC Command Status Register is read in step 5.4 If the CMD_Pending
bit is still set when the MFC Command Status Register is read in step 5, the command is enqueued. Once the
command is enqueued, the CMD_Pending bit is reset.

8.3 MFC Proxy Command Queue Status and Control Registers

The MFC provides an MFC SPU command queue, as well as a separate MFC proxy command queue for
PPEs and other devices. The commands and procedures for using the MFC SPU command queue are
defined in Section 9 Synergistic Processor Unit Channels beginning on page 113. The registers defined in
this section are the status and control registers for the MFC proxy command queue.

The MFC Proxy Command Parameter Registers (see page 80) along with the MFC Command Status
Register (see page 90) are used for queuing an MFC proxy command to the MFC proxy command queue.

The procedure for queuing a proxy command is outlined in Section 8.2 MFC Proxy Command Issue
Sequence beginning on page 88. These registers are intended to be used by software running on PPEs.
However, they can be made available to other SPUs or to other devices in the system.

In addition to the MFC Command Status Register, the MFC provides registers for determining the number of
proxy command slots available in the MFC proxy command queue. The MFC also provides registers for
determining when a tag group in the MFC proxy command queue is complete.

1. The MFC Transfer Size Register (see page 84) and the MFC Command Tag Register (see page 83) are a pair of registers.
The MFC Class ID Register (see page 82) and the MFC Command Opcode Register (see page 81) are a pair of registers.
Each pair must be updated using a single store instruction.

2. Reading the MFC Command Status Register (see page 90) causes the parameters to be enqueued if the sequence is cor-
rect.

3. If the local storage address is set again, then CMD_Pending is set again instead of being reset.
4. An MFC proxy command can also fail if there is insufficient room in the MFC proxy command queue.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 89 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.3.1 MFC Command Status Register (MFC_CMDStatus)

The MFC Command Status Register contains the return code from the last attempt to enqueue an MFC proxy
command to the MFC proxy command queue.

The MFC Command Opcode Register (see page 81) and MFC Command Status Register are mapped to the
same address. Ordering of the memory-mapped I/O (MMIO) accesses on these registers is maintained;
therefore, no intervening eieio instruction or mfceieio command is required.

Note: The MFC Command Status Register is a 32-bit register (the upper 16 bits are implementation depen-
dent). The MFC proxy command return code in the least-significant bits returns the proxy command status
when read.

Access Type Read

Base Address Offset (BP_Base | PS(n)) + x‘03014’; where n is an SPE number.

Implementation Dependent Reserved RC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:15 Implementation
Dependent Implementation dependent.

16:29 Reserved Set to zeros.

30:31 RC

MFC proxy command return code.
00 Command enqueue successful.
01 Command enqueue failed due to sequencing error.
10 Command enqueue failed due to insufficient space in the MFC proxy command queue.

The free space in the MFC proxy command queue is zero.
11 Command enqueue failed due to sequencing error. The free space in the MFC proxy com-

mand queue is zero.
Problem-State Memory-Mapped Registers

Page 90 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.3.2 MFC Queue Status Register (MFC_QStatus)

The MFC Queue Status Register contains the current status of the MFC proxy command queue.
The E bit (‘0’) of this register indicates either that the MFC proxy command queue is empty, or that it contains
valid proxy commands that have not finished processing. The lower 16 bits of this register return the number
of entries available in the MFC proxy command queue. Zeros in these bits indicate that the queue is full.

The problem-state registers are mapped as both caching-inhibited and guarded. Thus, an enforce in-order
execution of I/O (eieio) instruction is required between the store of a command and the load of its return
code. Software must issue an eieio instruction before reading this register to ensure that the effects of all
previously issued MMIO instructions or commands are reported correctly.

Access Type Read

Base Address Offset (BP_Base | PS(n)) + x‘03104’; where n is an SPE number.

E Reserved MFC_Q_Free_Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0 E
MFC proxy command queue empty. All MFC operations are complete.
0 MFC proxy command queue contains commands.
1 MFC proxy command queue does not contain any commands.

1:15 Reserved Reserved.

16:31 MFC_Q_Free_Space

MFC proxy command queue free space.
This field contains the number of queue entries available. Software can use this field to set a loop
count for the number of MFC proxy commands to enqueue. Software must not assume that a proxy
command is enqueued based on the free space. Other conditions can cause the proxy command
issue sequence to fail. For proper operation, software must follow the procedure outlined in
Section 8.2 MFC Proxy Command Issue Sequence on page 88.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 91 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.4 Proxy Tag-Group Completion Facility

Each MFC proxy command is tagged with a 5-bit identifier (that is, the MFC proxy command tag). The same
identifier can be used for multiple MFC proxy commands. A set of commands in the same queue with the
same identifier is called a tag group. Software can use this identifier to determine when a command or group
of commands has completed. (That is, it can use the MFC proxy command tag to check, or to wait on, the
completion of all queued commands for each tag group.) In addition, an interrupt can be sent to a processor
or device upon the completion of one or more tag groups if the interrupt is enabled by privileged software.

When the status returned by a channel read instruction that targets the MFC Read Tag-Group Status
Channel (see page 133) indicates that a put command is complete, the local storage accesses are complete.
The accesses are ordered with respect to the SPU. However, the main storage accesses might not be
complete. The accesses are not ordered with respect to other processors and devices. For a get command,
both the local storage and main storage accesses are complete and ordered with respect to other processors
and devices.

The following procedure polls for the completion of one or more tag groups in the MFC proxy command
queue:

1. Issue the MFC proxy commands to the MFC proxy command queue.

2. Set the Proxy Tag-Group Query Mask Register to the groups of interest.

3. Read the Proxy Tag-Group Status Register.

4. If the value is nonzero, one of the tag groups of interest has completed. If polling for all the tag groups of
interest is complete, perform an XOR between the proxy tag-group status value and the proxy tag-group
query mask. A zero indicates that all groups of interest are complete.

5. Repeat steps 3 and 4 until the tag groups of interest are complete.

The following procedure generates an interrupt when one or more tag groups complete, if the interrupt is
enabled by privileged software. The same procedure can be used to poll for the specific condition if the tag-
group completion interrupt is disabled.

1. Perform steps 1 and 2 as defined above in the polling procedure.
2. Request a tag-group query by writing a value of '01' or '10' to the Proxy Tag-Group Query Type Register.
3. Wait for an interrupt to occur if the interrupt is enabled.

OR

4. Read the Proxy Tag-Group Query Type Register until a value of 0 is returned.

Notes:

1. The query type should not be changed between '01' and '10’ and the query mask should not be altered
until the completion condition has been met. Doing so can produce an unexpected result. The query type
can be set to zero to cancel an outstanding query request.

2. Privileged software must reset the interrupt status after the interrupt is received. A new interrupt is not
generated until the interrupt status is reset and the MFC reenabled by writing the Proxy Tag-Group Query
Type Register to a '01' or '10'.
Problem-State Memory-Mapped Registers

Page 92 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.4.1 Proxy Tag-Group Query Type Register (Prxy_QueryType)

Software uses the Proxy Tag-Group Query Type Register to request the MFC to detect a tag-group comple-
tion condition for the MFC proxy command queue. There are two possible conditions that can be requested:
the completion of any enabled tag groups and the completion of all enabled tag groups. If the interrupt is
enabled, a tag-group completion interrupt is sent to any processor or any device in the system. See Section
21 Interrupt Facilities beginning on page 261 for more information.

A read of this register returns the current status of the query. A nonzero value indicates that the completion
condition has not occurred. When the completion condition is met, a read of this register returns zero, which
indicates “query request complete.” If the interrupt is enabled by privileged software, a tag-group completion
interrupt can be generated when the condition is met.

Writing zeros to this register while a request is still pending cancels the query request. Cancelling a query
request also prevents a tag-group completion interrupt from occurring when the condition is met.

Software should not change the query type while a request is pending, except to cancel the request. Doing so
can produce unexpected results.

Access Type Read/Write

Base Address Offset (BP_Base | PS(n)) + x‘03204’; where n is an SPE number.

Reserved TS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:29 Reserved Reserved.

30:31 TS

Tag status update condition.
00 No query requested.
01 Set interrupt status upon completion of any enabled tag groups.
10 Set interrupt status only upon completion of all enabled tag groups.
11 Reserved.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 93 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.4.2 Proxy Tag-Group Query Mask Register (Prxy_QueryMask)

The Proxy Tag-Group Query Mask Register selects the tag groups to be included in the query operation.

The data provided by this register is retained by the MFC until changed by a subsequent write to this register.
Therefore, the data does not need to be respecified for each status query. If software modifies this mask
when a query request is pending, the meaning of the results is ambiguous. A pending query request should
be cancelled before this mask is modified. A query request can be cancelled by writing a value of ‘0’ (query
complete) to the Proxy Tag-Group Query Type Register (see page 93).

Access Type Read/Write

Base Address Offset (BP_Base | PS(n)) + x‘0321C’; where n is an SPE number.

g 1
F

g 1
E

g 1
D

g 1
C

g 1
B

g 1
A

g 1
9

g 1
8

g 1
7

g 1
6

g 1
5

g 1
4

g 1
3

g 1
2

g 1
1

g 1
0

g F g E g D g C g B g A g 9 g 8 g 7 g 6 g 5 g 4 g 3 g 2 g 1 g 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 gn

Tag group “n” select.
0 Tag group is not part of a query or status operation.
1 Tag group is part of a query or status operation.
Problem-State Memory-Mapped Registers

Page 94 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.4.3 Proxy Tag-Group Status Register (Prxy_TagStatus)

The Proxy Tag-Group Status Register contains the current status of the tag groups enabled in the Proxy Tag-
Group Query Mask Register (see page 94). Only the status of the enabled tag groups is valid. The bit posi-
tions corresponding to disabled tag groups are set to '0'.

Software must issue an eieio instruction before reading this register to ensure that the effects of all previous
stores are reflected in the read data.

Access Type Read

Base Address Offset (BP_Base | PS(n)) + x‘0322C’; where n is an SPE number.

g 1
F

g 1
E

g 1
D

g 1
C

g 1
B

g 1
A

g 1
9

g 1
8

g 1
7

g 1
6

g 1
5

g 1
4

g 1
3

g 1
2

g 1
1

g 1
0

g F g E g D g C g B g A g 9 g 8 g 7 g 6 g 5 g 4 g 3 g 2 g 1 g 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 gn

Tag group “n” status.
0 Tag group has outstanding operations or is not part of query (that is, it is masked).
1 Tag group is complete; no outstanding operations.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 95 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.5 SPU Control and Status Facilities

The following SPU control and status registers are provided:

• SPU Run Control Register
• SPU Status Register (see page 97)
• SPU Next Program Counter Register (see page 99)

8.5.1 SPU Run Control Register (SPU_RunCntl)

The SPU Run Control Register is used to start and stop the execution of instructions in the SPU.
The SPU can dynamically change the state of the Run Status bit (that is, SPU_Status[R]).

The current status of the SPU run state is available in the SPU Status Register (see page 97).

Note: Performing a store operation to the SPU_RunCntl register is a context synchronizing operation in the
SPU. See the Synergistic Processor Unit Instruction Set Architecture document for more information on
synchronization.

Access Type Read/Write

Base Address Offset (BP_Base | PS(n)) + x‘0401C’; where n is an SPE number.

Reserved Run

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:29 Reserved Set to zeros.

30:31 Run

SPU run control.
00 SPU stop request (no instructions are issued).
01 SPU run request (instructions are issued if not stalled on condition).
10 SPU isolation exit request (an exit request is ignored if the SPU is not stopped or halted).
11 SPU isolation load request (a load request is ignored if the SPU is not stopped or halted, or

if the load request enable is not set).
Notes:

• See the SPU Status Register for the current status.
• If the Isolation state facility is not present, ‘10’ and ‘11’ are ignored.
Problem-State Memory-Mapped Registers

Page 96 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.5.2 SPU Status Register (SPU_Status)

The SPU Status Register is used to report the status (state) of an SPU. Software must issue an eieio instruc-
tion before reading this register to ensure that the effects of all previous stores are reflected in the read data.

Access Type Read

Base Address Offset (BP_Base | PS(n)) + x‘04024’; where n is an SPE number.

StopCode Reserved E L R
es

er
ve

d

IS C I S W H P R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:15 StopCode

SPU stop and signal type code.
If the P bit (stop and signal indication) is set to a ‘1’, this field provides a copy of bits 18 through 31
of the SPU stop-and-signal instruction that resulted in the SPU stop. Bits 0 and 1 of this field always
are zeros.
If the P bit is not set, data in bits 0 through 15 is not valid.
A stop-and-signal with a dependencies (STOPD) instruction, used for debugging, always sets this
field to x'3FFF'.

16:20 Reserved Reserved.

21 E

See Section 11 SPU Isolation Facility beginning on page 183.
SPU Isolation Exit Status
0 SPU is not performing an isolation exit function.
1 SPU is performing an isolation exit function.

22 L

See Section 11 SPU Isolation Facility beginning on page 183.
SPU Isolation Load Status
0 SPU is not performing an isolation load function.
1 SPU is performing an isolation load function.

23 Reserved

24 IS

See Section 11 SPU Isolation Facility beginning on page 183.
SPU Isolated State
0 SPU is not in an isolated state.
1 SPU is in an isolated state.

25 C

Invalid channel instruction detected. See note in Section 9 Synergistic Processor Unit Channels on
page 113 for definition of an invalid channel instruction.
0 No invalid channel instruction detected.
1 Invalid channel instruction detected. SPU halted (stopped imprecisely). MFC notified of

error condition.

26 I

Invalid instruction detected.
0 No invalid instruction detected.
1 Invalid instruction detected. SPU halted (stopped imprecisely). MFC notified of error condi-

tion.

27 S
SPU single-step status. See Section 16.1 SPU Privileged Control Register beginning on page 239.
0 SPU not stopped due to single-step mode.
1 SPU stopped after completion of an instruction in single-step mode.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 97 of 358

User Mode Environment

Cell Broadband Engine Architecture
Programming Note:

A read of this register provides a current view of the SPU state. The status read can change dynamically, if
the SPU is running. When the SPU is restarted bits, C, I, S, H, and P bits are cleared (that means that soft-
ware does not have to clear these bits before restarting).

If the SPU is stopped, the status remains static until software changes it. If the SPU was stopped under PPE
control while waiting on a blocked channel, the SPU wait status is set in conjunction with the SPU stopped
status.

When a stop-and-signal instruction is executed by the SPU, the least-significant 14 bits of the instruction are
copied to bits 2 through 15 of the SPU Status Register as a STOP type code. Bits 0 and 1 of the SPU Status
Register are always zeros. It is recommended that a value of x‘0’ for the STOP type be reserved for “DATA
Executed as Instruction.” It is further recommended that type values having the most-significant bit set (bit 2)
be reserved for runtime or privileged services.

A type value of x‘3FFF’ should be reserved for debugger breakpoints, because that value is hard wired on a
STOPD instruction.

Type codes with bit 2 of the type code set to zeros (x‘0001’ - x‘1FFF’) are available for application use. These
definitions are not enforced but are recommended conventions that could eventually become part of the
CBEA-compliant application binary interface (ABI).

28 W
SPU wait status.
0 SPU not waiting on a blocked channel.
1 SPU waiting on a blocked channel.

29 H
SPU halt instruction status.
0 SPU not halted (imprecise stopped) due to a halt instruction.
1 SPU halted (imprecise stopped) due to a halt instruction.

30 P
SPU program stop-and-signal status. (Applies to either STOP or STOPD instruction.)
0 SPU not stopped due to stop-and-signal instruction.
1 SPU stopped due to stop-and-signal instruction.

31 R
SPU run status.
0 SPU stopped or halted.
1 SPU running.

Bits Field Name Description
Problem-State Memory-Mapped Registers

Page 98 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.5.3 SPU Next Program Counter Register (SPU_NPC)

The SPU Next Program Counter Register contains the address from which an SPU starts executing when the
Run Control bit is set in the SPU Run Control Register (see page 96).

Access to this register is available in all states. Writes to this register update the contents only when the SPU
is in the stopped and nonisolated state (SPU_Status[R] = '0', SPU_Status[IS] = '0']). Writes to this register
have no effect if the SPU is an isolated state (SPU_Status[IS] = '1') or if the SPU is currently in the running
state. When the SPU is in the nonisolated and stopped state, a read of this register returns the local storage
address of the next instruction to be executed if the SPU is started without an intervening write to this register.
In addition, the least-significant bit of the data returned indicates the starting SPU interrupt enable or disable
state. When a read of this register is performed while the SPU is in an isolated state, a value of all zeros is
always returned. The data returned for a read of this register when the SPU is in the running and nonisolated
state (SPU_Status[R] = '1', SPU_Status[IS] = '0']) is undefined.

When the SPU has stopped execution, the hardware automatically updates the value in this register with the
address of the next instruction to be executed and with the current SPU interrupt enabled or disabled state if
execution is to be resumed with an SPU start command. The SPU can be stopped by any of the following
means:

• The execution of SPU conditional halt instructions
• An SPU error
• The execution of an SPU stop-and-signal instruction
• The execution of a single instruction step
• Resetting the Run Control bit in the SPU Run-Control Register

If the stop was due to a stop-and-signal instruction in nonisolated state, the location of the actual stop-and-
signal instruction can be determined by masking the enable or disable interrupt state bit (LSb), and then
subtracting 4 from the value read from this register. For proper operation, software must ensure that the SPU
program execution has stopped in a nonisolated state by reading and checking the values in the SPU Status
Register before reading the SPU Next Program Counter Register.

To resume execution of a program, software writes the SPU Run Control Register to the appropriate value or
issues an MFC proxy command with the S (start SPU) option. In a nonisolated state, to resume execution at
a different point in the program or if a new program is loaded into the SPU, software should write this register
to set the SPU program counter to the address in local storage of the next instruction to be executed. Soft-
ware also writes this register to set the initial interrupt enable or disable state in effect when the SPU starts. It
is not possible to affect the SPU execution address or state with this facility when the SPU is in an isolated
state.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 99 of 358

User Mode Environment

Cell Broadband Engine Architecture
Access Type Read/Write

Base Address Offset (BP_Base | PS(n)) + x‘04034’; where n is an SPE number.

Local Storage Address R
es

er
ve

d

IE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:29 Local Storage Address This field contains the local storage address of the first instruction issued when the Run Control bit
in the SPU Run Control Register is enabled.

30 Reserved Reserved

31 IE
Interrupt enable state.
0 SPU interrupts disabled at start.
1 SPU interrupts enabled at start.
Problem-State Memory-Mapped Registers

Page 100 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.6 Mailbox Facility

The MFC provides a set of mailbox queues between the SPU and other processors and devices. Each
mailbox queue has an SPU channel assigned as well as a corresponding MMIO register. SPU software
accesses the mailbox queues by using SPU channel instructions. Other processors and devices access the
mailbox queues by using one of the MMIO registers. In addition to the queues, the MFC provides queue
status, mailbox interrupts, and SPU event notification for the mailboxes. Collectively, the MMIO registers,
channels, status, interrupts, mailbox queues, and events are called the mailbox facility.

The MFC provides two mailbox queues for sending information from the SPU to another processor or to other
devices: the SPU outbound mailbox queue and the SPU outbound interrupt mailbox queue. These mailbox
queues are intended for sending short messages to the PPEs (for example, return codes or status).

Data written by the SPU to one of these queues using a write channel (wrch) instruction is available to any
processor or device by reading the corresponding MMIO register. A write channel (wrch) instruction that can
target the SPU Write Outbound Interrupt Mailbox Channel (see page 140) can also cause an interrupt to be
sent to a processor, or to another device in the system.

An MMIO read from either of these queues (SPU outbound mailbox or SPU outbound interrupt mailbox) can
set an SPU event, which in turn causes an SPU interrupt. See Section 9.11 SPU Event Facility beginning on
page 150 for a description of the SPU event facility. See Section 9.12 SPU Event Definitions beginning on
page 163 for a description of the events that can be caused.

One mailbox queue is provided for either an external processor or other devices to send information to the
SPU: the SPU inbound mailbox queue. This mailbox queue is intended to be written by a PPE. However,
other processors, SPUs, or other devices can also use this mailbox queue. Data written by a processor or
another device to this queue using an MMIO write is available to the SPU by reading the SPU Read Inbound
Mailbox Channel (see page 141).

An MMIO write to the SPU Inbound Mailbox Register can set an SPU event, which in turn can cause an SPU
interrupt.

The rest of this section describes the following registers:

• SPU Outbound Mailbox Register (see page 102)
• SPU Inbound Mailbox Register (see page 103)
• SPU Mailbox Status Register (see page 104)

For information about the Privilege 2 Mailbox Interrupt MMIO Register and the channels that correspond to
these registers, see:

• Section 15.12 SPU Outbound Interrupt Mailbox Register beginning on page 237
• Section 9.5.1 SPU Write Outbound Mailbox Channel beginning on page 139
• Section 9.5.2 SPU Write Outbound Interrupt Mailbox Channel beginning on page 140
• Section 9.5.3 SPU Read Inbound Mailbox Channel beginning on page 141
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 101 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.6.1 SPU Outbound Mailbox Register (SPU_Out_Mbox)

The SPU Outbound Mailbox Register is used to read 32 bits of data from the corresponding SPU outbound
mailbox queue. The SPU Outbound Mailbox Register has a corresponding SPU Write Outbound Mailbox
Channel (see page 139) for writing data into the SPU outbound mailbox queue.

A write channel (wrch) instruction that targets the SPU outbound mailbox queue loads the 32 bits of data
specified in the instruction into the SPU outbound mailbox queue for other processors or other devices to
read. If the SPU outbound mailbox queue is full, the SPU stalls on the write channel (wrch) instruction that
targets to this queue until an MMIO read from this mailbox register occurs. An MMIO read of this register
always returns the information in the order it was written by the SPU. The information returned on a read from
an empty SPU outbound mailbox queue is undefined.

The number of entries in the SPU outbound mailbox queue (or queue depth) is implementation dependent.

An MMIO read of the SPU Mailbox Status Register (see page 104) returns the status of the mailbox queues.
The number of valid queue entries in the SPU outbound mailbox queue is given in the
SPU_Out_Mbox_Count field of the SPU Mailbox Status Register (that is, SPU_Mbox_Stat
[SPU_Out_Mbox_Count]).

An MMIO read of the SPU Outbound Mailbox Register sets a pending SPU outbound mailbox available
event. If the amount of data remaining in the mailbox queue is below an implementation-dependent threshold
and this condition is enabled (that is, SPU_WrEventMask[Le] is set to ‘1’), the SPU Read Event Status
Channel is updated (that is, SPU_RdEventStat[Le] is set to ‘1’). Its channel count is set to 1, which causes an
SPU outbound mailbox available event.

Implementation Note:

The MFC must not acknowledge a write to the SPU Write Outbound Mailbox Channel (see page 139) until a
PPE or other device has read the contents of the mailbox.

Access Type MMIO: Read

Base Address Offset (BP_Base | PS(n)) + x‘04004’; where n is an SPE number.

Mailbox Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Mailbox Data
Application-specific mailbox data
Each application can uniquely define the mailbox data.
Problem-State Memory-Mapped Registers

Page 102 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.6.2 SPU Inbound Mailbox Register (SPU_In_Mbox)

The SPU Inbound Mailbox Register is used to write 32 bits of data into the corresponding SPU inbound
mailbox queue. The SPU inbound mailbox queue has a corresponding SPU Read Inbound Mailbox Channel
(see page 141) for reading data from the queue.

A read channel (rdch) instruction that targets the SPU Read Inbound Mailbox Channel loads the 32 bits of
data from the SPU inbound mailbox queue into the SPU register specified by the read channel (rdch) instruc-
tion. The SPU cannot read from an empty mailbox. If the SPU inbound mailbox queue is empty, the SPU
stalls on a read channel (rdch) instruction to this channel until data is written to the mailbox. A read channel
(rdch) instruction to this channel always returns the information in the order it was written by PPEs or by
other processors and devices.

The number of entries in the SPU inbound mailbox queue (or queue depth) is implementation dependent.

An MMIO read of the SPU Mailbox Status Register (see page 104), returns the state of the mailbox queues.
The number of available queue locations in the SPU inbound mailbox queue is given in the
SPU_In_Mbox_Count field of the SPU Mailbox Status Register (that is, SPU_Mbox_Stat
[SPU_In_Mbox_Count]). Software should check the SPU Mailbox Status Register before writing to the
SPU_In_Mbox to avoid overrunning the SPU mailbox.

An MMIO write of the SPU Inbound Mailbox Register sets a pending SPU mailbox event. If enabled (that is,
SPU_WrEventMask[Mbox] =‘1’), the SPU Read Event Status Channel is updated and its channel count is set
to 1, which causes an SPU inbound mailbox available event.

Access Type MMIO: Write Only1

1. Read is only supported for diagnostic purposes.

Base Address Offset (BP_Base | PS(n)) + x‘0400C’; where n is an SPE number.

Mailbox Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Mailbox Data
Application-specific mailbox data
Each application can uniquely define the mailbox data.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 103 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.6.3 SPU Mailbox Status Register (SPU_Mbox_Stat)

The SPU Mailbox Status Register contains the current state of the mailbox queues in the corresponding SPE.
Reading this register has no effect on the state of the mailbox queues.

Access Type Read

Base Address Offset (BP_Base | PS(n)) + x‘04014’; where n is an SPE number.

Reserved SPU_Out_Intr_Mbox_ Count SPU_In_Mbox_Count SPU_Out_Mbox_Count

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:7 Reserved Set to zeros.

8:15 SPU_Out_Intr_Mbox_
Count

Number of valid entries in the SPU outbound interrupt mailbox queue (optional for a one-deep inter-
rupt mailbox)
The SPU_Out_Intr_Mbox_ Count value is incremented when the SPU writes the SPU Write Out-
bound Interrupt Mailbox Channel (see page 140). It is decremented when a processor or other
device reads the SPU Outbound Interrupt Mailbox Register (see page 237). The number of entries
supported is implementation dependent.

16:23 SPU_In_Mbox_Count

Number of available entries in the SPU inbound mailbox queue
The SPU_In_Mbox_Count value is decremented when a processor or other device writes the SPU
Inbound Mailbox Register. It is incremented when the SPU reads the SPU Read Inbound Mailbox
Channel. The number of entries supported is implementation dependent.

24:31 SPU_Out_Mbox_Count

Number of valid entries in the SPU outbound mailbox queue
The SPU_Out_Mbox_Count value is incremented when the SPU writes the SPU Write Outbound
Mailbox Channel. It is decremented when a processor or other device reads the SPU Outbound
Mailbox Register. The number of entries supported is implementation dependent.
Problem-State Memory-Mapped Registers

Page 104 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.7 SPU Signal Notification Facility

The SPU signal notification facility sends signals, such as a buffer completion flag, to an SPU from other
processors and devices in the system. The CBEA provides two independent signal notification facilities: SPU
Signal Notification 1 and SPU Signal Notification 2.

Each facility consists of one register and one channel:

• SPU Signal Notification 1 Register (see page 106) and SPU Signal Notification 1 Channel (see page 143)
• SPU Signal Notification 2 Register (see page 107) and SPU Signal Notification 2 Channel (see page 144)

Signals are issued by an SPU using a set of send signal commands (sndsig[<f,b>]) with the effective
address of the Signal Notification Register associated with the SPU to which the signal is sent.
(For information about the commands, see Section 7.9.4 Send Signal Command on page 77 and
Section 7.9.5 Send Signal with Fence or with Barrier Command on page 78.)

PPEs and other devices that do not support send signal commands simulate sending a signal notification by
performing an MMIO write to the SPU Signal Notification Register associated with the SPU to which the
signal is to be sent.

Each of the signal notification facilities can be programmed to either an overwrite mode, which is useful in a
one-to-one signalling environment, or to a logical OR mode, which is useful in a many-to-one signalling envi-
ronment. The mode for each channel is set in the SPU Configuration Register (see page 245). Performing
either a send signal command or an MMIO write that targets a signalling register programmed to overwrite
mode sets the contents of the associated channel to the data of the signalling operation. It also sets the corre-
sponding channel count to 1. In logical OR mode, the data of the signalling operation is ORed with the current
contents of the channel, and the corresponding channel count is set to 1.

In addition, the signal notification registers are used as the effective address pointer to the image loaded
when requesting an isolation load. For more information, see Section 11 SPU Isolation Facility beginning on
page 183. In these cases, SPU Signal Notification 1 Register contains the upper 32 bits of the 64-bit effective
address. SPU Signal Notification 2 Register contains the least-significant 32 bits. For proper operation of an
isolation load request, software must place the SPU signal notification facility in overwrite mode before it sets
the effective address.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 105 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.7.1 SPU Signal Notification 1 Register (SPU_Sig_Notify_1)

Access Type MMIO: Read/Write

Base Address Offset (BP_Base | PS(n)) + x‘1400C’; where n is an SPE number.

SigCntlWord

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 SigCntlWord

Signal-control word
The application defines the data. It can either be ORed with the previous value, or it can overwrite
the previous value.
For more information, see Section 16.4 SPU Configuration Register beginning on page 245.
The current contents are reset to zero when the SPU reads the value of the corresponding channel
using an SPU read channel (rdch) instruction.
Problem-State Memory-Mapped Registers

Page 106 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.7.2 SPU Signal Notification 2 Register (SPU_Sig_Notify_2)

Access Type MMIO: Read/Write

Base Address Offset (BP_Base | PS(n)) + x‘1C00C’; where n is an SPE number.

SigCntlWord

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 SigCntlWord

Signal-control word
The application defines the data. It can either be ORed with the previous value, or it can overwrite
the previous value.
For more information, see Section 16.4 SPU Configuration Register beginning on page 245.
The current contents are reset to zero when the SPU reads the value of the corresponding channel
using an SPU read channel (rdch) instruction.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 107 of 358

User Mode Environment

Cell Broadband Engine Architecture
8.8 MFC Multisource Synchronization Facility

The MFC multisource synchronization facility achieves cumulative ordering across the local storage and main
storage address domains. The term cumulative ordering refers to the ordering of storage accesses that are
performed by multiple sources (that is, two or more processors or units) with respect to another processor or
unit. Standard PowerPC ordering rules apply to storage accesses that are performed by one processor or unit
with respect to another processor or unit. See PowerPC Architecture, Book II for additional details.

Note: The MFC multisource synchronization facility is not an MFC command; it is a mechanism in an SPE.

Cumulative ordering is ensured when all accesses are performed in the main storage address domain and
the proper synchronization instructions and commands are performed. Cumulative ordering cannot be
ensured just by performing the proper synchronization instructions and commands when accesses are
performed from both the main storage and the local storage address domains. When cumulative ordering is
needed for accesses performed in both domains, software must use the MFC multisource synchronization
facility and the proper synchronization instructions and commands to ensure all data is visible in both
domains.

The MFC multisource synchronization facility consists of the following components:

• The MFC Multisource Synchronization Register (see page 109), which allows processors or devices to
control synchronization from the main storage address domain

• The MFC Write Multisource Synchronization Request Channel (see page 149), which allows an SPU to
control synchronization from the local storage address domain

The MFC multisource synchronization facility ensures that all transfers to or from the associated MFC that are
received before the MFC multisource synchronization requests are completed. This facility does not ensure
that read data is visible at the destinations when the associated MFC is the source. Synchronization requests
caused by a write of the MFC Multisource Synchronization Register are independent of synchronization
requests caused by a write of the MFC Write Multisource Synchronization Request Channel.
Problem-State Memory-Mapped Registers

Page 108 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8.8.1 MFC Multisource Synchronization Register (MFC_MSSync)

The MFC Multisource Synchronization Register is part of the MFC multisource synchronization facility, as is
the MFC Write Multisource Synchronization Request Channel.

Writing any value to the MFC Multisource Synchronization Register requests synchronization. At the time of
the write, the MFC starts to track all outstanding transfers to the corresponding SPE. When read, this register
returns the current status of the last request. When all outstanding transfers to the corresponding SPE that
were received before the last write of the MFC Multisource Synchronization Register are complete, a value of
0 is returned for an MMIO read of this register.

To use the MFC Multisource Synchronization Register, a program must perform the following steps:

1. Write to the MFC Multisource Synchronization Register.
2. Poll the MFC Multisource Synchronization Register until a value of 0 is received.

Access Type MMIO: Read/Write

Programming Note:

Use of the MFC Multisource Synchronization Register is required for swapping context on an SPE. After stop-
ping an SPU, privileged software must prevent any new transfers from being initiated to the SPE by unmap-
ping the associated resources. Next, privileged software must use the MMIO MFC Multisource
Synchronization Register to ensure the completion of all outstanding transfers. This has the side effect of
ensuring the MFC Write Multisource Synchronization Request Channel count is 1 and the SPU Read Event
Status is updated.

The following examples illustrate when the different multisource synchronization facilities are required. These
examples show an I/O device storing data to the local storage alias area followed by a store to main storage.
A second processor reads main storage and stores to another location in the local storage alias area. Cumu-
lative ordering requires that the value loaded from location X by the SPU must be 1.

The first example illustrates the use of the MFC Multisource Synchronization Register. The second illustrates
the use of the MFC Write Multisource Synchronization Request Channel. In both of these examples, locations
X, Y, and Z all have an initial value of 0. A third example illustrates the use of the MFC multisource synchroni-
zation facility when starting an SPU.

Without the use of these facilities, the SPU might not receive a ‘1’ when reading the local storage location X.

Base Address Offset (BP_Base | PS(n)) + x‘00000’; where n is an SPE number.

Reserved S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:30 Reserved Set to zeros.

31 S
MFC Multisource Synchronization Status
0 All transfers received before MFC_MSSync register write are complete.
1 All transfers received before MFC_MSSync register write are not complete.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 109 of 358

User Mode Environment

Cell Broadband Engine Architecture
Example 1. MFC Multisource Synchronization Register:

I/O Device (This example assumes that I/O transfers, including interrupts, are always processed in
order.)

• Stores 1 to local storage alias X.
• Stores 2 to main storage location Y.

Processor
• Loops loading from main storage location Y until a value of 2 is obtained.
• Stores to the MFC Multisource Synchronization Register.
• Polls the MFC Multisource Synchronization Register until a zero is obtained.
• Stores 3 to local storage alias Z.

SPU
• Loops loading from local storage location Z until a value of 3 is obtained.
• Loads from local storage location X and obtains 1.

Example 2. MFC Write Multisource Synchronization Request Channel:

I/O Device (This example assumes that I/O transfers, including interrupts, are always processed in
order.)

• Stores 1 to local storage alias X.
• Stores 2 to main storage location Y.

Processor
• Loops loading from main storage location Y until a value of 2 is obtained.
• Stores 3 to local storage alias Z.

SPU
• Loads from local storage location Z and obtains 3.
• Writes to the SPU_WrEventAck Channel with bit 19 set to acknowledge a previous multisource syn-

chronization event.
• Writes to the SPU_WrEventMask Channel with bit 19 set to enable the multisource synchronization

event.
• Channel writes to the MFC Write Multisource Synchronization Request Channel.
• Waits for a multisource synchronization event to occur. (The wait can be coded as a read of the count

for MFC_WrMSSyncReq Channel, reading the SPU Read Event Status Channel (see page 153), or
with a bisled instruction.)

• Loads from local storage location X and obtains 1.

Example 3. MFC Multisource Synchronization Facility:

I/O Device (This example assumes that I/O transfers, including interrupts, are always processed in
order.)

• Stores 1 to local storage alias X.
• Interrupts the processor.

Processor
• After receiving the interrupt, performs any necessary instructions or procedures to guarantee that any

stores from an I/O device are complete. (This is required if interrupts are not ordered with previous
stores from the I/O device.)

• Stores to the MFC Multisource Synchronization Register.
• Polls the MFC Multisource Synchronization Register until a zero is obtained.
• Stores x‘01’ to the SPU Run Control Register to start the SPU.

SPU
• Starts to execute instructions, which load from local storage location X, and obtains 1.
Problem-State Memory-Mapped Registers

Page 110 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
Note: Frequent use of a single MFC multisource synchronization facility by two or more processors or
devices can result in a livelock condition. The livelock occurs when a read from a processor or from a device
never returns zero due to a synchronization request from other processors or devices.

Implementation Note:

The MFC Multisource Synchronization Register and the MFC Write Multisource Synchronization Request
Channel must be treated independently. A synchronization request from the MFC proxy facility must not have
any effects on the channel request and vice versa.
Version 1.02
October 11, 2007

Problem-State Memory-Mapped Registers

Page 111 of 358

User Mode Environment

Cell Broadband Engine Architecture
Problem-State Memory-Mapped Registers

Page 112 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9. Synergistic Processor Unit Channels

In the Cell Broadband Engine Architecture (CBEA), channels are used as the primary interface between the
synergistic processor unit (SPU) and the memory flow controller (MFC). The SPU channel access facility (see
page 242) is used to configure, save, and restore the SPU channels. The SPU Instruction Set Architecture
(ISA) provides a set of channel instructions for communication with external devices through a channel inter-
face (or SPU channels). Table 9-1 lists these instructions.

Architecturally, SPU channels are defined as read only or write only; channels cannot be defined as both read
and write. In addition to the access type, each channel can be defined as nonblocking or blocking. All
blocking channels have an associated channel count. Nonblocking channels do not have an associated
channel count; a read channel count instruction (rchcnt) that targets a nonblocking channel always returns a
count of 1. Channels that are defined as blocking cause the SPU to stall when reading a channel with a
channel count of 0, or when writing to a full channel (that is, a channel with a channel count of 0).

• Read—Means that data is always returned for a read channel instruction (rdch) that targets this channel.

• Write—Means that data is always accepted for a write channel instruction (wrch) that targets this chan-
nel.

• Read-blocking—Means that a read channel instruction (rdch) can target this channel. However, a read
channel instruction (rdch) that targets a read-blocking channel only completes if the channel count is not
0. A channel count of 0 indicates that the channel is empty. Executing a read channel instruction (rdch)
to a read-blocking channel with a count of 0 results in the SPU stalling until data is available in the chan-
nel.

• Write-blocking—Means that a write channel instruction (wrch) can target this channel. However, a write
channel (wrch) instruction that targets a write-blocking channel only completes if the channel count is not
0. A channel count of 0 indicates that the channel is full. Executing a write channel (wrch) instruction to a
write-blocking channel with a count of 0 results in the SPU stalling until an entry in the addressed channel
becomes available.

Note: Issuing a channel instruction that is inappropriate for the definition of the channel results in an invalid
channel instruction interrupt. For example, issuing a read channel instruction (rdch) to a channel defined as a
write or write-blocking channel results in an invalid channel instruction interrupt.

Each blocking channel has a corresponding count (that is, depth), which indicates the number of outstanding
operations that can be issued for that channel. The channel depth (that is, the maximum number of
outstanding transfers) is implementation dependent. Software must initialize the channel counts when estab-
lishing a new context in the SPU, or when it resumes an existing context.

Table 9-1. SPU Channel Instructions

Channel Instruction Instruction Mnemonic Operational Description

Read Channel rdch Causes a read of data stored in the addressed channel to be loaded into
the selected general purpose register (GPR).

Write Channel wrch Causes data to be read from the selected GPR and stored in the
addressed channel.

Read Channel Count rchcnt Causes the count associated with the addressed channel to be stored in
the selected GPR.

Note: The Synergistic Processor Unit Instruction Set Architecture defines channels as 128 bits. The CBEA defines all channels a as 32
bits, and those 32 bits are in the preferred slot. See the Synergistic Processor Unit Instruction Set Architecture document for more infor-
mation.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 113 of 358

User Mode Environment

Cell Broadband Engine Architecture
Table 9-2 lists the SPU channels grouped by function. Each Synergistic Processor Element (SPE) in the
processor contains the full set of channels outlined in Table 9-2 and an SPU channel access facility (see
page 242). For the reader's convenience,Table B-1 SPU Channel Map on page 305 duplicates Table 9-2
below.

Note: No reserved channels can be used for implementation-dependent functions.

Table 9-2. SPU Channel Map (Page 1 of 2)

Channel
Number

(Hexadecimal)
Channel Name Description Access Type

SPU Event Channels

x‘0’ SPU_RdEventStat
SPU Read Event Status Channel (see page 153).
Read event status (with mask applied).

Read blocking

x‘1’ SPU_WrEventMask
SPU Write Event Mask Channel (see page 157).
Write event-status mask.

Write

x‘2’ SPU_WrEventAck
SPU Write Event Acknowledgment Channel (see page 161).
Write end-of-event processing.

Write

SPU Signal Notification Channels

x‘3’ SPU_RdSigNotify1 SPU Signal Notification 1 Channel (see page 143).
Read blocking

x‘4’ SPU_RdSigNotify2 SPU Signal Notification 2 Channel (see page 144).
Read blocking

x‘5’ Channel 5 Reserved

x‘6’ Channel 6 Reserved

SPU Decrementer Channels

x‘7’ SPU_WrDec SPU Write Decrementer Channel (see page 145). Write

x‘8’ SPU_RdDec SPU Read Decrementer Channel (see page 146). Read

MFC Multisource Synchronization Channels

x‘9’ MFC_WrMSSyncReq MFC Write Multisource Synchronization Request Channel (see
page 149). Write blocking

SPU Reserved Channel

x‘A’ Channel 10 Reserved

Mask Read Channels

x‘B’ SPU_RdEventMask SPU Read Event Mask Channel (see page 159). Read

x‘C’ MFC_RdTagMask MFC Read Tag-Group Query Mask Channel (see page 131). Read

SPU State Management Channels

x‘D’ SPU_RdMachStat SPU Read Machine Status Channel (see page 147). Read

x‘E’ SPU_WrSRR0 SPU Write State Save-and-Restore Channel (see page 148). Write

x‘F’ SPU_RdSRR0 SPU Read State Save-and-Restore Channel (see page 148). Read

MFC SPU Command Parameter Channels

x‘10’ MFC_LSA
MFC Local Storage Address Channel (see page 121).
Write local storage address command parameter.

Write
Synergistic Processor Unit Channels

Page 114 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
x‘11’ MFC_EAH
MFC Effective Address High Channel (see page 124).
Write high-order MFC SPU effective-address command parameter.

Write

x‘12’ MFC_EAL
MFC Effective Address Low or List Address Channel (see page
122).
Write low-order MFC SPU effective-address command parameter.

Write

x‘13’ MFC_Size
MFC Transfer Size or List Size Channel (see page 120).
Write MFC SPU transfer-size command parameter.

Write

x‘14’ MFC_TagID
MFC Command Tag Identification Channel (see page 119).
Write MFC SPU tag identifier command parameter.

Write

x‘15’
MFC_Cmd
MFC_ClassID

MFC Command Opcode Channel (see page 117).
Write and enqueue MFC SPU command with associated class ID.

Write blocking
MFC Class ID Channel (see page 118).
Write and enqueue MFC SPU command with associated command
opcode.

MFC Tag Status Channels

x‘16’ MFC_WrTagMask
MFC Write Tag-Group Query Mask Channel (see page 129).
Write tag mask.

Write

x‘17’ MFC_WrTagUpdate
MFC Write Tag Status Update Request Channel (see page 132).
Write request for conditional or unconditional tag status update.

Write blocking

x‘18’ MFC_RdTagStat
MFC Read Tag-Group Status Channel (see page 133).
Read tag status (with mask applied).

Read blocking

x‘19’ MFC_RdListStallStat
MFC Read List Stall-and-Notify Tag Status Channel (see page
135).
Read MFC list stall-and-notify status.

Read blocking

x‘1A’ MFC_WrListStallAck
MFC Write List Stall-and-Notify Tag Acknowledgment Channel
(see page 136).
Write MFC list stall-and-notify acknowledgment.

Write

x‘1B’ MFC_RdAtomicStat
MFC Read Atomic Command Status Channel (see page 137).
Read atomic command status.

Read blocking

SPU Mailboxes

x‘1C’ SPU_WrOutMbox
SPU Write Outbound Mailbox Channel (see page 139).
Write outbound SPU mailbox contents.

Write blocking

x‘1D’ SPU_RdInMbox
SPU Read Inbound Mailbox Channel (see page 141).
Read inbound SPU mailbox contents.

Read blocking

x‘1E’ SPU_WrOutIntrMbox
SPU Write Outbound Interrupt Mailbox Channel (see page 140).
Write SPU outbound interrupt mailbox contents.

Write blocking

x‘1F’ - x‘3F’ Channel 31 - Channel 63 Reserved

Table 9-2. SPU Channel Map (Page 2 of 2)

Channel
Number

(Hexadecimal)
Channel Name Description Access Type
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 115 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.1 MFC SPU Command Parameter Channels

The MFC proxy command parameter registers are described in Section 8.1 on page 80. The channels used
to queue an MFC SPU command to the MFC SPU command queue are described in the following sections:

• Section 9.1.1 MFC Command Opcode Channel beginning on page 117 describes using channel x‘15’
(lower bits).

• Section 9.1.2 MFC Class ID Channel beginning on page 118 describes using channel x‘15’ (upper bits).

• Section 9.1.3 MFC Command Tag Identification Channel beginning on page 119 describes using channel
x‘14’.

• Section 9.1.4 MFC Transfer Size or List Size Channel beginning on page 120 describes using channel
x‘13’.

• Section 9.1.5 MFC Local Storage Address Channel beginning on page 121 describes using channel
x‘10’.

• Section 9.1.6 MFC Effective Address Low or List Address Channel beginning on page 122 describes
using channel x‘12’.

• Section 9.1.7 MFC Effective Address High Channel beginning on page 124 describes using channel
x‘11’.

The MFC SPU command parameter channels, except for the MFC Command Opcode Channel, are
nonblocking. They do not have channel counts associated with them. A read channel count (rchcnt) instruc-
tion that targets these channels returns a count of 1.

The MFC Command Opcode Channel has a maximum count configured by hardware to the number of MFC
SPU queue commands supported by the hardware. Software must initialize the MFC Command Opcode
Channel count to the number of empty MFC SPU command queue slots supported by the implementation
after power-on and after a purge of the MFC queue. This channel count must also be saved and restored on
an SPE preemptive context switch.

Implementation Note:

An MFC SPU command must not be put into the MFC SPU command queue until a write channel (wrch) of
the MFC SPU command to MFC Command Opcode Channel is executed by the SPU. The maximum count of
the MFC Command Opcode Channel should be configured by hardware to the number of empty MFC SPU
command slots supported by the implementation.
Synergistic Processor Unit Channels

Page 116 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.1.1 MFC Command Opcode Channel (MFC_Cmd)

The MFC Command Opcode Channel determines the operation to be performed. The validity of this opcode
is checked asynchronously to the instruction stream. If the MFC SPU command or any of the command
parameters are invalid, MFC SPU command queue processing is suspended. If the interrupt is enabled, an
invalid MFC SPU command interrupt is sent. For more information about interrupts, see Section 21 Interrupt
Facilities beginning on page 261.

Software must avoid programming practices that place commands in the queue with forward dependencies
on newer commands that are placed in the queue. Software with this type of dependency can create a dead-
lock based on the number of available slots in the MFC SPU command queue. In addition, while queue depth
is implementation dependent, software must not be written to require a specific queue depth.

Software can determine the number of queue entries available in the MFC SPU command queue by issuing a
read channel count (rchcnt) instruction that targets this channel. The value returned is the number of avail-
able queue slots. Software can use this value to avoid stalling the execution of an SPU program, which
occurs when an MFC SPU command enqueue is attempted to a full queue.

Section 9.2 MFC SPU Command Issue Sequence beginning on page 125 describes the queuing sequence
for MFC SPU commands.

Access Type Write-blocking

Note: The MFC SPU command and the class ID parameters must be written to the MFC SPU command
queue using a single channel instruction. The MFC SPU command parameter is the lower 16-bits of the 32-
bit word. The upper 8 bits of this field are reserved. If the MSb (that is, bit 0 of this field) is set to ‘1’, the SPU
command is reserved and can be used for an implementation-dependent function.

Programming Note:

The total number of queue slots is implementation dependent and varies between implementations. For port-
ability of an application, the enqueue sequence for direct memory access (DMA) commands and the method
to determine the number of queue slots available should be provided as a macro or library function that uses
a configuration-dependent method for queueing commands.

Channel Number x‘15’ (lower 16 bits)

Reserved MFC Cmd Opcode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Field Name Description

0:7 Reserved Should normally be set to zeros. If bit 0 is set to ‘1’, the opcode is reserved.

8:15 MFC Cmd Opcode
MFC SPU command opcode.
See Section 7 MFC Commands beginning on page 55 for the MFC command opcodes.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 117 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.1.2 MFC Class ID Channel (MFC_ClassID)

The MFC Class ID Channel is used to specify the replacement class ID and the transfer class ID for each
MFC SPU command. Software can use these IDs to improve the overall performance of the system.

The transfer class ID (TclassID) lets an implementation optimize MFC SPU command transfers based on the
characteristics of the storage location. The replacement class ID (RClassID) lets an implementation influence
cache replacement. For more information on the replacement class ID, see Section 19 Cache Replacement
Management Facility on page 255. The exact function and mapping of the replacement class ID and the
transfer class ID are implementation dependent. For more information on setup and use of these IDs, see the
specific implementation documentation.

The MFC class ID performs the same function for commands that are issued to the MFC SPU command
queue or to the MFC proxy command queue. Thus, its function is queue independent. For example, the
RclassID affects which set in the translation lookaside buffer (TLB) is available to be replaced. The RClassID
is a pointer into the replacement management table (RMT), which is shared between queues. Since the RMT
is shared and the TLB is shared, the class ID is independent of the queue to which the command was issued.
(A parameter such as the Tag parameter, on the other hand, is queue specific).

The MFC Class ID Channel controls resources that are associated with a specific SPE. It has no effect on
resources associated with other SPEs or PPEs.

The contents of the class ID parameters are not persistent and must be written for each MFC SPU command
enqueue sequence.

The validity of the class ID parameters is not verified. The number of class IDs supported is implementation
dependent. The default class ID (x‘00’) is used for all undefined or invalid class IDs. An invalid class ID does
not generate an exception.

Access Type Write-blocking

Note: The MFC class ID parameters must be written to the MFC SPU queue along with the command
parameter using a single channel instruction. The MFC SPU command parameter is the lower 16 bits of the
32-bit word. The MFC class ID parameter is the upper 16 bits of the 32-bit word.

Channel Number x‘15’ (upper 16 bits)

TclassID RclassID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Field Name Description

0:7 TclassID Transfer class identifier

8:15 RclassID Replacement class identifier
Synergistic Processor Unit Channels

Page 118 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.1.3 MFC Command Tag Identification Channel (MFC_TagID)

The MFC Command Tag Identification Channel is used to specify an identifier for each command, or for a
group of commands. The identification tag is any value between x‘0’ and x‘1F’. Identification tags have a
purely local scope in the hardware.

Any number of MFC SPU commands can be tagged with the same identification. MFC SPU commands
tagged with the same identification are called a tag group. Tags are associated with commands written to a
specific queue. Tags supplied to the MFC SPU command queue are independent of the tags supplied to the
MFC proxy command queue.

The MFC Command Identification Tag parameter is not persistent and must be written for each MFC SPU
command enqueue sequence.

The validity of this parameter is checked asynchronous to the instruction stream. If the upper bits (bits 0
through 26) are not set to zeros, MFC SPU command queue processing is suspended. If the interrupt is
enabled, an invalid MFC SPU command interrupt is generated. For more information about interrupts, see
Section 21 Interrupt Facilities beginning on page 261.

Access Type Write

Channel Number x‘14’

Reserved
MFC Command

Identification Tag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:26 Reserved Set to zeros.

27:31 MFC Command Tag
Identification MFC SPU command tag identification
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 119 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.1.4 MFC Transfer Size or List Size Channel (MFC_Size)

The MFC Transfer Size or List Size Channel is used to specify the size of the MFC transfer, or the size of the
MFC DMA transfer list. The transfer size value can be 0, 1, 2, 4, 8, 16, or a multiple of 16 bytes to a maximum
of 16 KB. The MFC transfer list size can have a value of 8, or of multiples of 8 up to a maximum of 16 KB.

The contents of the MFC Transfer Size or List Size Channel are not persistent and must be written for each
MFC SPU command enqueue sequence.

The validity of this parameter is checked asynchronously to the instruction stream. If the size is invalid, the
MFC SPU command queue processing is suspended. If the interrupt is enabled, an MFC DMA alignment
interrupt is sent. For more information about interrupts, see Section 21 Interrupt Facilities beginning on page
261.

Access Type Write

Programming Note:

Typically, systems are more efficient when they perform transfers that are the size of a cache line or multiple
cache lines. Excessive use of small transfers (less than a cache line) can result in poor bus and memory
bandwidth utilization. In addition, when transferring multiple quadwords, better performance can typically be
achieved when the effective address and local storage address are both aligned within the cache line. For
example, if the cache line size is 128-bytes, optimal performance can be achieved when bits 25 through 27 of
the 32-bit local storage address are equal to bits 57 thorough 59 of the 64-bit effective address. The lower 4
bits of the effective address and local storage address must be zero for quadword transfers.

The method that an application uses to determine the cache line size of the processor is implementation
dependent. For more information, see the specific implementation documentation and software interface
specifications.

Channel Number x‘13’

Reserved MFC Transfer/List Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:16 Reserved Set to zero.

17:31 MFC Transfer/List Size

Valid MFC transfer size or list size:
• 0 ≤ MFC transfer size ≤ 16 KB
• 0 ≤ MFC list size ≤ 16 KB

Allowable transfer sizes or list sizes follow:
• 0, 1, 2, 4, and 8 bytes (naturally aligned), where the source and destination address must have

the same 4 least-significant bits (see Table 7-6 Command Errors and Alignment Errors on
page 61).

• 16 bytes and multiples of 16 bytes up to 16 KB, where the source and destination addresses
must be 16-byte (quadword) aligned.

Allowable MFC list sizes follow:
• Multiples of 8 bytes with a minimum size of 0 bytes and a maximum size of 16 KB for list size,

where the list must start on an 8-byte (doubleword) boundary in local storage. This provides a
list with from 0 to 2048 possible elements.
Synergistic Processor Unit Channels

Page 120 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.1.5 MFC Local Storage Address Channel (MFC_LSA)

The MFC Local Storage Address Channel is used to supply the SPU local storage address associated with
an MFC SPU command to be queued. This address is used as the source or destination of the MFC transfer
as defined in the MFC SPU command. For more information, see Section 7 MFC Commands beginning on
page 55.

The contents of the MFC Local Storage Address Channel are not persistent and must be written for each
MFC SPU command enqueue sequence.

The validity of this parameter is checked asynchronously to the instruction stream. To be considered aligned,
the 4 least-significant bits of the local storage address must match the least-significant 4 bits of the effective
address. If the address is unaligned, MFC SPU command queue processing is suspended. If the interrupt is
enabled, an MFC DMA alignment interrupt is sent. For more information about interrupts, see Section 21
Interrupt Facilities beginning on page 261.

Access Type Write

Programming Note:

Typically, systems are more efficient when they perform transfers of a cache line or multiple cache lines.
Excessive use of small transfers (less than a cache line) can result in poor bus and memory bandwidth utiliza-
tion. In addition, when transferring multiple quadwords, better performance can typically be achieved when
the effective address and local storage address are both aligned within the cache line. For example, if the
cache line size is 128 bytes, optimal performance can be achieved when bits 25 through 27 of the 32-bit local
storage address are equal to bits 57 thorough 59 of the 64-bit effective address. The lower 4 bits of the effec-
tive address and local storage address must be zero for quadword transfers.

The method that an application uses to determine the cache line size of the processor is implementation
dependent. For more information, see the specific implementation documentation and software interface
specifications.

Channel Number x‘10’

MFC Local Storage Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 MFC Local Storage
Address

MFC local storage address
Note: The 4 least-significant bits of the local storage address must match the least-significant 4 bits
of the effective address.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 121 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.1.6 MFC Effective Address Low or List Address Channel (MFC_EAL)

The MFC Effective Address Low or List Address Channel is used to specify the lower 32 bits of the 64-bit
effective address for the MFC SPU command, or the local storage pointer to the list elements for a list
command. If translation is enabled in MFC State Register One (that is, MFC_SR1[R] is set to ‘1’), effective
addresses are translated into real addresses by the memory management unit (MMU) address translation
facility (for more information, see PowerPC Architecture, Book III). If translation is disabled, the 64-bit
address formed by MFC_EAH ⎜⎜MFC_EAL must be a supported address within the real address space of
main storage. Handling of unsupported addresses is implementation dependent. For more information about
the real address limits of an implementation, see the specific implementation documentation.

The contents of the MFC Effective Address Low or List Address Channel are not persistent and must be
written for each MFC SPU command enqueue sequence.

For transfer sizes less than 16 bytes, MFC_EAL bits 28 through 31 must provide natural alignment based on
the transfer size. For transfer sizes of 16 bytes or greater, bits 28 through 31 must be zeros. In addition to
these limitations, bits 28 through 31 must match bits 28 through 31 of the MFC_LSA. For list commands, bits
29 through 31 of the List Address must be zeros. If any of these conditions are not met, the MFC_EAL param-
eter is considered unaligned and is invalid.

The validity of this parameter is checked asynchronously to the instruction stream. If the address is invalid
(for example, due to a segment fault, a mapping fault, a protection violation, or an alignment error),
processing of the MFC SPU command queue is suspended. An interrupt, if enabled, is sent. Processing of
other commands in the queue continues if possible, subject to any fence or barrier commands.

The following types of interrupts can be sent:

• If a segment fault occurs, an MFC data segment interrupt is sent.
• If a mapping fault or a page protection violation occurs, an MFC data-storage interrupt is sent.
• If the address is not aligned, a DMA alignment interrupt is sent.

For more information about interrupts, see Section 21 Interrupt Facilities beginning on page 261.

Notes:

• The validity of the effective address is checked during transfers. Partial transfers can be performed
before an invalid address is encountered and the exception is generated.

• For optimal performance of transfers of 128 bytes or more, the source and destination transfer addresses
should be 128-byte aligned (bits 25 through 31 set to 0).

Access Type Write

Channel Number x‘12’
Synergistic Processor Unit Channels

Page 122 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
Programming Note:

Typically, systems are more efficient when they perform transfers of a cache line or multiple cache lines.
Excessive use of small transfers (less than a cache line) can result in poor bus and memory bandwidth utiliza-
tion. In addition, when transferring multiple quadwords, better performance can typically be achieved when
the effective address and local storage address are both aligned within the cache line. For example, if the
cache line size is 128 bytes, optimal performance can be achieved when bits 25 through 27 of the 32-bit local
storage address are equal to bits 57 thorough 59 of the 64-bit effective address. The lower 4 bits of the effec-
tive address and local storage address must be zero for quadword transfers.

The method that an application uses to determine the cache line size of the processor is implementation
dependent. For more information, see the specific implementation documentation and software interface
specifications.

Low Word of 64-Bit Effective Address or the Local Storage Address of the MFC List

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31

Low Word of 64-Bit
Effective Address or the
Local Storage Address

of the MFC List

Low word of the 64-bit effective address or the local storage address of the MFC list.
For transfer sizes less than 16 bytes, address bits 28 through 31 must provide natural alignment
based on the transfer size. For transfer sizes of 16 bytes or greater, bits 28 through 31 must be 0.
If translation is disabled (the effective address equals the real address), some higher-order bits
must also be zero, depending on the amount of real memory in the system.
For MFC list operations, this parameter contains the local storage address of the MFC list. In this
case, the address must begin on an 8-byte boundary.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 123 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.1.7 MFC Effective Address High Channel (MFC_EAH)

The MFC Effective Address High Channel is used to specify the upper 32 bits of the 64-bit effective address
for the MFC SPU command. If translation is enabled in MFC State Register One (that is, MFC_SR1[R] is ‘1’),
effective addresses are translated into real addresses by the MMU address translation facility (for more infor-
mation, see PowerPC Architecture, Book III). If translation is disabled (the effective address equals the real
address), the number of lower effective address bits that are valid is implementation dependent (for more
information, see the specific implementation documentation).

The contents of the MFC Effective Address High Channel are not persistent and must be written for each
MFC SPU command enqueue sequence.

This parameter is optional. If the effective address high (EAH) is not written, then the hardware sets the EAH
parameter to zero (that is, the address is between 0 and 232-1).

The validity of this parameter is checked asynchronously to the instruction stream. If the address is invalid
(for example, due to a segment fault, a mapping fault, or a protection violation), processing of the MFC SPU
command queue is suspended. An interrupt, if enabled, is sent. Processing of other commands in the queue
continues if possible, subject to any fence or barrier commands.

The following types of interrupts can be sent:

• If a segment fault occurs, an MFC data-segment interrupt is sent.
• If a mapping fault or a page protection violation occurs, an MFC data-storage interrupt is sent.

For more information about interrupts, see Section 21 Interrupt Facilities beginning on page 261.

Note: The validity of the effective address is checked during transfers. Partial transfers can be performed
before an invalid address is encountered and the exception is generated.

Access Type Write

Channel Number x‘11’

High Word of 64-Bit Effective Address (Optional)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31
High Word of 64-Bit
Effective Address

(Optional)

High word of the 64-bit effective address.
• EAH is optional. If not written, zeros are used for the upper 32 bits of the 64-bit effective

address.
• If translation is disabled, the number of lower effective address bits that are valid is implemen-

tation specific. The remaining upper bits are required to be zero.
Synergistic Processor Unit Channels

Page 124 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.2 MFC SPU Command Issue Sequence

To queue an MFC SPU command from the SPU, the MFC SPU command parameters must first be written to
the MFC SPU command parameter channels. The following command parameters can be written in any
order, except that step 6 must always be done last:

1. Write the local storage address parameter (32 bits).

2. Write the effective address high parameter (upper 32 bits).1

3. Write the effective address low or the list address parameter (lower 32 bits).

4. Write the MFC SPU transfer or list size parameter (16 bits).

5. Write the MFC SPU command tag parameter (16 bits).

6. Write the MFC SPU command opcode and class ID parameter (32 bits).2

The MFC SPU command parameters are retained in the MFC SPU command parameter channels until the
MFC processes a write of the MFC SPU command opcode and class ID parameter.

A write channel (wrch) instruction targeted to the MFC Command Opcode Channel and MFC Class ID
Channel causes the parameters held in the MFC SPU command parameter channels to be sent to the MFC
SPU command queue. The MFC SPU command parameters can be written in any order before the issue of
the MFC SPU command itself. The values of the last parameters written to the MFC SPU command param-
eter channels are used in the enqueuing operation.

After an MFC SPU command has been queued, the values of the MFC parameters become invalid and must
be respecified for the next MFC SPU command queuing request. Not specifying all of the required MFC
parameters (that is, all the parameters except for the optional EAH) can result in the improper operation of the
MFC SPU command queue.

The MFC SPU command parameter channels, except for the MFC Command Opcode Channel, are
nonblocking. They do not have channel counts associated with them. A read channel count (rchcnt) instruc-
tion that targets these channels returns a count of 1.

The MFC Command Opcode Channel and MFC Class ID Channel have a maximum count configured by
hardware to the number of MFC SPU queue commands supported by hardware. Software must initialize the
channel count of the MFC Command Opcode Channel to the number of empty MFC SPU command queue
slots supported by the implementation after power on and after a purge of the MFC SPU command queue.
The channel count of the MFC Command Opcode Channel must also be saved and restored on an SPE
preemptive context switch. (For more information, see the SPE context save sequence in the specific imple-
mentation documentation.)

1. This parameter is optional and is set to zero if not written.
2. This write channel (wrch) instruction stalls the SPU until there is room in the MFC queue for the command.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 125 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.3 MFC Tag-Group Status Channels

This section describes how to determine if the MFC SPU commands for a tag group are complete. It also
describes how to determine if a list command is stalled on a list element, which has its stall-and-notify flag set
to a ‘1’. In addition, it describes how to subsequently restart the list command.

Each MFC SPU command is tagged with a 5-bit identifier (that is, the MFC command tag). The same identi-
fier can be used for multiple MFC SPU commands. A set of commands in the same queue with the same
identifier is called a tag group. Software can use this identifier to determine when a command or group of
commands has completed. (That is, it can use the MFC command tag to check or to wait on the completion of
all queued commands for each tag group.) In addition, software uses the MFC command tag to check or to
wait on a list command, to reach an element with a stall-and-notify flag set, and to acknowledge the list
element for resuming the list command. An interrupt can also be sent to a processor or device upon the
completion of one or more tag groups if the interrupt is enabled by privileged software. For more information,
see Section 7.4 List Commands and List Elements on page 63.

When the status returned by a channel read instruction that targets the MFC Read Tag-Group Status
Channel (see page 133) indicates that a put command is complete, the local storage accesses are complete.
The accesses are ordered with respect to the SPU. However, the main storage accesses might not be
complete. The accesses are not ordered with respect to other processors and devices. For a get command,
both the local storage and main storage accesses are complete and ordered with respect to other processors
and devices.

9.3.1 Determining the Status of Tag Groups

Three basic procedures are supported to determine the status of the tag groups:

• Poll the MFC Read Tag-Group Status Channel
• Wait for a tag-group update, or wait for an event
• Interrupt on a tag-group status update event

The basic procedure for polling for the completion of an MFC SPU command, or for the completion of a group
of MFC SPU commands, follows:

1. Clear any pending tag status update requests by performing the following steps:

• Write ‘00’ to the MFC Write Tag Status Update Request Channel (see page 132).

• Read the channel count associated with the MFC Write Tag Status Update Request Channel (see
page 132) until a value of 1 is returned.

• Read the MFC Read Tag-Group Status Channel (see page 133) and discard the tag status data.

2. Enable the tag groups of interest by writing the MFC Write Tag-Group Query Mask Channel (see page
129) with the appropriate mask data. This step is only needed if a new tag-group mask is required.

3. Request an immediate tag status update by writing the MFC Write Tag Status Update Request Channel
(see page 132) with a value of 0.

4. Read the MFC Read Tag-Group Status Channel (see page 133). The data returned is the current status
of each tag group with the tag-group mask applied.1

5. Repeat steps 3 and 4 until the tag group or the tag groups of interest are complete.

1. Performing a read of the MFC Tag Group Status Channel before issuing a request for a tag status update results in an SPU
execution deadlock.
Synergistic Processor Unit Channels

Page 126 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
The basic procedure for waiting for a tag-group update or waiting for events (one or more tag-group comple-
tions) follows:

1. Clear any pending tag status update requests by performing the following steps:

• Write ‘00’ to the MFC Write Tag Status Update Request Channel (see page 132).

• Read the channel count associated with the MFC Write Tag Status Update Request Channel (see
page 132), until a value of 1 is returned.

• Read the MFC Read Tag-Group Status Channel (see page 133) and discard the tag status data.

2. Request a conditional tag status update by writing the MFC Write Tag Status Update Request Channel
(see page 132), with a value of '01' or '10'. A value of '01' specifies that the completion of any enabled tag
group results in a tag-group update. A value of '10' specifies that all enabled tag groups must complete to
result in an SPU tag-group status update.

3. THEN EITHER:

• Read from the MFC Read Tag-Group Status Channel (see page 133) to wait on the specific tag
event specified in steps 1 and 2. This read stalls the execution of the SPU until the condition specified
in step 2 is met.

OR

• Read the count associated with the MFC Read Tag-Group Status Channel (see page 133) until a
count of 1 is returned. Now, read from the MFC Read Tag-Group Status Channel (see page 133) to
determine which tag group or tag groups are complete.

An alternative to waiting for or polling on a conditional tag event is to use the SPU event facility. This proce-
dure is typically used when an application is waiting for one of multiple events to occur or can do other work
while waiting for command completion. The procedure for using this facility follows:

1. Clear any pending tag status update requests by performing the following steps:

• Write ‘00’ to the MFC Write Tag Status Update Request Channel (see page 132).

• Read the channel count associated with the MFC Write Tag Status Update Request Channel (see
page 132) until a value of 1 is returned.

• Read the MFC Read Tag-Group Status Channel (see page 133) and discard the tag status data.

After this step, select the tag group or tag groups.

2. Clear any pending tag status update events by writing (wrch) ‘1’ to the Tg bit of the SPU Write Event
Acknowledgment Channel (see page 161).

3. Unmask the MFC Tag-Group Status Update Event (see page 163) by writing a '1' to the Tg bit of the SPU
Write Event Mask Channel (see page 157).

4. THEN EITHER:

• Read from the SPU Read Event Status Channel (see page 153) to wait for an enabled event to
occur. This read stalls the execution of the SPU until an enabled event occurs.

OR

• Read the count associated with the SPU Read Event Status Channel (see page 153) to poll or wait
for the specific tag event until a count of 1 is returned. Read from the SPU Read Event Status Chan-
nel (see page 153) to determine which events occurred.

5. If an MFC tag-group status update event occurred, read (rdch) from the MFC Read Tag-Group Status
Channel (see page 133) to determine which tag or tag groups caused the event.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 127 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.3.2 Determining Command Completion

Three basic procedures are supported to determine if a list command has reached a list element with the
stall-and-notify flag set:

• Poll the MFC Read List Stall-and-Notify Tag Status Channel (see page 135)
• Wait for an MFC list command stall-and-notify event (see page 163)
• Interrupt on MFC list command stall-and-notify event

The basic procedure for polling to determine if a list command has reached a list element with the stall-and-
notify flag set follows:

1. Issue a list command that has a list element with the stall-and-notify flag set.

2. Read the count (rchcnt) associated with the MFC Read List Stall-and-Notify Tag Status Channel (see
page 135) until a value of 1 is returned.

3. Read (rdch) the MFC Read List Stall-and-Notify Tag Status Channel (see page 135). The data returned
is the current status of each tag group that has reached a list element with the stall-and-notify flag set
since the last read of this channel.

4. Repeat steps 2 and 3 until the tag group or tag groups of interest have reached the list element with the
stall-and-notify flag set. (The corresponding bits are set in the return data.)

5. Write (wrch) the MFC Write List Stall-and-Notify Tag Acknowledgment Channel (see page 136) with the
tag-group number corresponding to the stalled tag group to resume the list command.

The basic procedure for waiting for a list command to reach a list element with the stall-and-notify flag set
follows:

1. Issue a list command that has a list element with the stall-and-notify flag set.

2. Read (rdch) the MFC Read List Stall-and-Notify Tag Status Channel (see page 135). The data returned
is the current status of each tag group that has reached a list element with the stall-and-notify flag set
since the last read of this channel. This read stalls the SPU until a list command has reached a list ele-
ment with the stall-and-notify flag set.

3. Repeat step 2 until the tag group or groups of interest have reached the list element with the stall-and-
notify flag set. (The corresponding bits are set in the return data. Because the bits are reset for each read,
software must perform the accumulation of the tag groups while waiting on multiple tag groups to stall.)

4. Write (wrch) the MFC Write List Stall-and-Notify Tag Acknowledgment Channel (see page 136) with the
tag-group number corresponding to the stalled tag group to resume the list command.

An alternative to waiting for or polling on MFC Read List Stall-and-Notify Tag Status is to use the SPU event
facility. This procedure is typically used when other work can be performed by the SPU program while the list
command is executing.

The procedure for using this facility follows:

1. Clear any pending MFC list command stall-and-notify events by writing (wrch) a ‘1’ to the Sn bit of the
SPU Write Event Acknowledgment Channel (see page 161).

2. Enable the MFC list command stall-and-notify event by writing a ‘1’ to the Sn bit of the SPU Write Event
Mask Channel (see page 157).

3. Issue a list command that has a list element with the stall-and-notify flag set.
Synergistic Processor Unit Channels

Page 128 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
4. THEN EITHER:

• Read (rdch) from the SPU Read Event Status Channel (see page 153) to wait for an enabled event
to occur. This read stalls the execution of the SPU until an enabled event occurs.

OR:

• Read the count (rchcnt) associated with the SPU Read Event Status Channel (see page 153) to poll
for the specific tag event until a count of 1 is returned.

• Read (rdch) from the SPU Read Event Status Channel (see page 153) to determine which events
occurred.

5. If an MFC list stall-and-notify event occurred, read (rdch) from the MFC Read List Stall-and-Notify Tag
Status Channel (see page 135) to determine which tag group or groups caused the event.

6. Repeat steps 4 and 5 until the tag group or groups of interest have reached the list element with the stall-
and-notify flag set. (The corresponding bits are set in the return data. Because the bits are reset for each
read, software must perform the accumulation of the tag groups while waiting for multiple tag groups to
stall.)

7. Write (wrch) the MFC Write List Stall-and-Notify Tag Acknowledgment Channel (see page 136) with the
tag-group number corresponding to the stalled tag group to resume the list command.

9.3.3 MFC Write Tag-Group Query Mask Channel (MFC_WrTagMask)

The MFC Write Tag-Group Query Mask Channel is used to select the tag groups to be included in the query
or wait operations. A query (MFC tag status update request) operation is started by writing to the MFC Write
Tag Status Update Request Channel; the status of the query is available in the MFC Read Tag-Group Status
Channel.

The data provided by this channel is retained by the MFC until changed by a subsequent write channel
(wrch) to this channel. Therefore, the data does not need to be respecified for each status query or wait. If
this mask is modified by software when a query request is pending, the meaning of the results is ambiguous.
A pending query request should always be cancelled before this mask is modified. A query request can be
cancelled by writing a value of ‘0’ (that is, immediate update) to the MFC Write Tag Status Update Request
Channel (see page 132).

The current contents of this channel can be accessed by reading (rdch) the MFC Read Tag-Group Query
Mask Channel (see page 131).

This channel is nonblocking and does not have an associated count. If a read channel count (rchcnt) instruc-
tion targets this channel, the count is always returned as 1.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 129 of 358

User Mode Environment

Cell Broadband Engine Architecture
Access Type Write

Channel Number x‘16’

g 1
F

g 1
E

g 1
D

g 1
C

g 1
B

g 1
A

g 1
9

g 1
8

g 1
7

g 1
6

g 1
5

g 1
4

g 1
3

g 1
2

g 1
1

g 1
0

g F g E g D g C g B g A g 9 g 8 g 7 g 6 g 5 g 4 g 3 g 2 g 1 g 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 gn

Tag group “n” select
0 Tag group is not part of a query or wait-on-tag-event operation.
1 Tag group is part of a query or wait-on-tag-event operation.
Synergistic Processor Unit Channels

Page 130 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.3.4 MFC Read Tag-Group Query Mask Channel (MFC_RdTagMask)

The MFC Read Tag-Group Query Mask Channel is used to read the mask value that specifies the tag groups
in the MFC SPU queue that are included in query or wait operations. Reading this channel always returns the
current value in the MFC Read Tag-Group Query Mask Channel associated with the MFC SPU command
queue.

This channel can be used by an SPE context save and restore operation, which avoids the need for software
shadow copies of the value last written to the MFC Write Tag-Group Query Mask Channel.

This channel is nonblocking and does not have an associated count. If a read channel count (rchcnt) instruc-
tion targets this channel, the count is always returned as 1.

Access Type Read

Channel Number x‘C’

g 1
F

g 1
E

g 1
D

g 1
C

g 1
B

g 1
A

g 1
9

g 1
8

g 1
7

g 1
6

g 1
5

g 1
4

g 1
3

g 1
2

g 1
1

g 1
0

g F g E g D g C g B g A g 9 g 8 g 7 g 6 g 5 g 4 g 3 g 2 g 1 g 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 gn

Tag group “n” select.
0 Tag group is not part of a query or wait-on-tag-event operation.
1 Tag group is part of a query or wait-on-tag-event operation.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 131 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.3.5 MFC Write Tag Status Update Request Channel (MFC_WrTagUpdate)

The MFC Write Tag Status Update Request Channel is used to control when the MFC tag-group status is
updated in the MFC Read Tag-Group Status Channel (see page 133). The MFC Write Tag-Group Query
Mask Channel controls which tag groups participate in the update requests and therefore which tag groups
influence the value read from the MFC Read Tag-Group Status Channel.

The MFC Write Tag Status Update Request Channel can specify when the status is updated:

• Updated immediately
• Updated when any enabled MFC tag-group has a “no operation outstanding” status, or
• Updated only when all enabled MFC tag groups have a “no operation outstanding” status.

A write channel (wrch) instruction to this channel must occur before a read channel (rdch) instruction from
the MFC Read Tag-Group Status Channel occurs. An MFC write tag status update request should be
performed after setting the tag-group mask and after issuing the commands for the tag groups of interest. If
the commands for a tag group are completed before issuing the MFC write tag status update request, thereby
satisfying the update status condition, the status is returned without waiting.

Reading from the MFC Read Tag-Group Status Channel (see page 133) without first requesting a status
update by writing to the MFC Write Tag Status Update Request Channel results in a software-induced dead-
lock.

Completing the following steps can cancel a previous MFC write tag status update request:

1. Issue an immediate update status request to the MFC Write Tag Status Update Request Channel.

2. Read the count associated with the MFC Write Tag Status Update Request Channel until a value of 1 is
returned.

3. Read from the MFC Read Tag-Group Status Channel to determine if the operation is complete and to dis-
card unwanted results.

Two conditional update requests without an intervening status read request result in the return of an unpre-
dictable tag status. To avoid unpredictable results, software should pair requests for tag status updates with
reads of the tag status, unless a request cancellation is performed with the immediate-update request.

Privileged software initializes the count for this channel to 1. The count for this channel is set to 0 when a
write channel (wrch) instruction targets this channel. The count is set to 1 when the MFC receives the tag
status update request.

This channel is write-blocking enabled with a maximum count of 1.

Access Type Write-blocking

Channel Number x‘17’

Reserved TS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:29 Reserved Reserved.
Synergistic Processor Unit Channels

Page 132 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
Implementation Note:

When an immediate request type command targets this channel, the MFC must not acknowledge the write
channel (wrch) of the MFC Write Tag Status Update Request Channel until it has processed the command
and updated the MFC Read Tag-Group Status Channel with the results. An immediate request type
command must cancel any pending conditional request command. When the MFC has advised the hardware
to check for the condition, the MFC acknowledges the write channel (wrch) of the MFC Write Tag Status
Update Request Channel. When a conditional request type command targets this channel, acknowledging
the write of this channel causes the channel count to change from 0 to 1.

9.3.6 MFC Read Tag-Group Status Channel (MFC_RdTagStat)

The MFC Read Tag-Group Status Channel contains the status of the tag groups from the last tag-group
status update request. Only the status of the enabled tag groups at the time of the tag-group status update is
valid. The bit positions that correspond to the tag groups that are disabled at the time of the tag-group status
update are set to '0'.

When the status of a channel read instruction that targets the MFC Read Tag-Group Status Channel indi-
cates that a put command is complete, the local storage accesses are complete. The accesses are ordered
with respect to the SPU. However, the main storage accesses might not be complete. The accesses are not
ordered with respect to other processors and devices. For a get command, both the local storage and main
storage accesses are complete and ordered with respect to other processors and devices.

A write channel (wrch) instruction must target the MFC Write Tag Status Update Request Channel before
reading from this channel. Failure to do so results in a software-induced deadlock condition. This is consid-
ered a programming error, and privileged software is required to remove the deadlock condition.

A read channel count (rchcnt) instruction that targets the MFC Read Tag-Group Status Channel returns 0 if
the status is not yet available. It returns 1 if the status is available. This instruction can be used to avoid
stalling the SPU when the MFC Read Tag-Group Status Channel is read.

Software initializes the count for this channel to a value of 0. This channel is read-blocking enabled, with a
maximum count of 1.

30:31 TS

Tag-status update condition
00 Update immediately, unconditional.
01 Update tag status if or when any enabled tag group has “no outstanding operation” status.
10 Update tag status if or when all enabled tag groups have “no outstanding operation” status.
11 Reserved.

Bits Field Name Description
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 133 of 358

User Mode Environment

Cell Broadband Engine Architecture
Access Type Read-blocking

Channel Number x‘18’

g 1
F

g 1
E

g 1
D

g 1
C

g 1
B

g 1
A

g 1
9

g 1
8

g 1
7

g 1
6

g 1
5

g 1
4

g 1
3

g 1
2

g 1
1

g 1
0

g F g E g D g C g B g A g 9 g 8 g 7 g 6 g 5 g 4 g 3 g 2 g 1 g 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 gn

Tag group “n” status
1 Tag group has no outstanding operations (commands are complete) and was not disabled

by the query mask.
0 Tag group has outstanding operations or has been disabled by the query mask.
Synergistic Processor Unit Channels

Page 134 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.3.7 MFC Read List Stall-and-Notify Tag Status Channel (MFC_RdListStallStat)

List elements for a list command contain a stall-and-notify flag. If the flag is set on a list element, the MFC
stops executing the list command after completing (from the SPU’s perspective) the transfer requested by
this element. The flag sets the bit corresponding to the tag group of the list command in this channel. The
count associated with this channel is also set to 1. A list command remains stalled until acknowledged by
writing the tag value to the MFC Write List Stall-and-Notify Tag Acknowledgment Channel (see page 136).

Note: The MFC list stall-and-notify facility is useful when a program wants to be notified when MFC list exe-
cution has reached a specific point. This is also useful when an application wants to dynamically change list
elements (transfer sizes or effective addresses) that follow the stalled list element. List elements can also be
skipped by setting their transfer size to 0. Hardware is not allowed to prefetch list elements beyond a stall-
and-notify element.

Privileged software should initialize the count of the MFC Read List Stall-and-Notify Tag Status Channel to
zeros.

Software can determine which tag groups have commands that have stalled since the last read of this
channel by reading the contents of this channel again. Issuing a read channel (rdch) instruction to this
channel resets all bits to zeros, and sets the count corresponding to this channel to 0. Therefore, issuing a
read channel (rdch) instruction with no outstanding list elements that contain a stall-and-notify flag set to '1'
and no stalled commands results in a software-induced deadlock.

Issuing a read channel (rdch) instruction when no tag groups are stalled results in SPU execution stall until a
list element with the stall-and-notify flag set is encountered.

Software can also read the count (rchcnt) associated with this channel or use the SPU event facility to deter-
mine when a list element is encountered with the stall-and-notify flag set.

A read channel count (rchcnt) instruction that targets the MFC Read List Stall-and-Notify Tag Status Channel
returns 0 if there are no new stalled list commands since the last read of this channel.

This channel is read-blocking and has a maximum count of 1.

Access Type Read-blocking

Channel Number x‘19’

g 1
F

g 1
E

g 1
D

g 1
C

g 1
B

g 1
A

g 1
9

g 1
8

g 1
7

g 1
6

g 1
5

g 1
4

g 1
3

g 1
2

g 1
1

g 1
0

g F g E g D g C g B g A g 9 g 8 g 7 g 6 g 5 g 4 g 3 g 2 g 1 g 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 gn

Tag group “n” status
1 Tag group has a list command that has stalled on an element with the stall-and-notify flag

set.
0 Tag group has no list commands currently stalled.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 135 of 358

User Mode Environment

Cell Broadband Engine Architecture
Programming Note:

Programmers should avoid issuing multiple list commands that have the stall-and-notify flags set within the
same tag group, unless subsequent commands have a tag-specific fence. If multiple list commands are
issued with the same tag ID and without a tag-specific fence, software cannot determine which command or
commands have reached the stall point. A programmer should always use a tag-specific fence or a barrier
between list commands with the same tag ID that have a list element with a stall-and-notify flag set.

Implementation Notes:

1. A read channel (rdch) instruction resets all bits. If a bit is set at the same time as a read channel (rdch)
instruction, that bit must remain set. The channel count must remain at 1 if the state of the bit is not
reflected in the data returned for the read channel (rdch) instruction.

2. If hardware implements MFC list prefetching, it must not span an element that has the stall-and-notify flag
set. Software can modify the list following a stall, before acknowledging and resuming list processing.

9.3.8 MFC Write List Stall-and-Notify Tag Acknowledgment Channel (MFC_WrListStallAck)

The MFC Write List Stall-and-Notify Tag Acknowledgment Channel is used to acknowledge a tag group
containing list commands that are stalled on a list element with the stall-and-notify flag set. The tag group is
acknowledged by writing the MFC tag identifier to this channel. After the write, all stalled list commands of the
tag group for the identifier written to this channel are restarted.

Note: The MFC list stall-and-notify facility is useful when a program wants to be notified when MFC list exe-
cution has reached a specific point. This is also useful when an application wants to dynamically change list
elements (transfer sizes or effective addresses) that follow the stalled list element. List elements can also be
skipped by setting their transfer size to 0. Hardware is not allowed to prefetch list elements beyond a stall-
and-notify element.

Acknowledging a tag group that is currently not stalled due to a stall-and-notify condition is undefined. Doing
so can result in an invalid status in the MFC Read List Stall-and-Notify Tag Status Channel. For consistency,
an implementation should treat this condition as a no-op.

This channel is nonblocking and does not have an associated count. Whenever a read channel count
(rchcnt) instruction targets this channel, the count is always returned as 1.

Access Type Write

Channel Number x‘1A’

Reserved MFC Tag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:26 Reserved Reserved.

27:31 MFC Tag The tag can be any value between x‘0’ and x‘1F’.
Synergistic Processor Unit Channels

Page 136 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.4 MFC Read Atomic Command Status Channel (MFC_RdAtomicStat)

The MFC Read Atomic Command Status Channel contains the status of the last completed immediate MFC
atomic update command (getllar, putllc, or putlluc). Issuing a read channel (rdch) instruction to this channel
before issuing an immediate atomic command results in a software-induced deadlock.

Note: This channel does not provide any status for the queued putqlluc command.

Software can read the channel count (rchcnt) associated with this channel to determine if an immediate MFC
atomic update command has completed.

• If a value of 0 is returned, the immediate MFC atomic update command has not completed.

• If a value of 1 is returned, the immediate MFC atomic update command has completed, and the status is
available by reading (rdch) this channel.

A read (rdch) from the MFC Read Atomic Command Status Channel should always follow an immediate
MFC atomic update command. Performing multiple MFC atomic update commands without an intervening
read from the MFC Read Atomic Command Status Channel results in an incorrect status.

Privileged software should initialize the count of this channel to 0. This channel is read-blocking with a
maximum count of 1. The contents of this channel are cleared when read.

Completion of a subsequent immediate MFC atomic update command overwrites the status of an earlier
MFC atomic update command.

Access Type Read-blocking

Channel Number x‘1B’

Reserved G U S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:28 Reserved Reserved.

29 G Set if the get lock-line and reserve (getllar) command completed.

30 U Set if the put lock-line unconditional (putlluc) command completed.

31 S
Put lock-line conditional command (putllc).
1 Put conditional unsuccessful. The reservation was lost.
0 Put conditional successful.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 137 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.5 SPU Mailbox Channels

This section describes the following channels, which are part of the mailbox facility (see page 101):

• The SPU Write Outbound Mailbox Channel (see page 139)
• The SPU Write Outbound Interrupt Mailbox Channel (see page 140)
• The SPU Read Inbound Mailbox Channel (see page 141)

The SPU mailbox channels are defined as blocking. That is, they stall the SPU when a channel is full (write-
blocking) or when data is not available (read-blocking). The blocking method of a channel is very beneficial
for power savings when an application has no other work to perform.

However, accessing these channels causes the SPU to stall for an indefinite period of time. Software can
avoid stalling the SPU by using the SPU event facility (see page 150) or by reading the channel count associ-
ated with the mailbox channel.
Synergistic Processor Unit Channels

Page 138 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.5.1 SPU Write Outbound Mailbox Channel (SPU_WrOutMbox)

A write channel (wrch) to this channel writes data to the SPU write outbound mailbox queue. The data written
to this channel by the SPU is available for a memory-mapped I/O (MMIO) read of the SPU Outbound Mailbox
Register (see page 102).

A write channel (wrch) to this channel also causes the associated channel count to be decremented by 1.
Writing to a full SPU write outbound mailbox queue causes SPU execution to stall until the SPU Outbound
Mailbox Register (see page 102) is read, freeing up a location in the SPU write outbound mailbox queue. To
avoid the stall condition, the channel count associated with this channel can be read to ensure there is a slot
in the SPU write outbound mailbox queue before issuing the channel write. Alternatively, the SPU outbound
mailbox available event can be used to signal the availability of a slot in the SPU write outbound mailbox
queue, if it was determined to be full.

When the SPU write outbound mailbox queue is full, a read of the channel count associated with this channel
returns a value of 0. A nonzero value indicates the number of 32-bit words free in the SPU write outbound
mailbox queue.

Privileged software initializes the count of this channel to the depth of the SPU write outbound mailbox queue.
This channel is write-blocking. The maximum count for this channel is implementation dependent. It should
be the depth (that is, the number of available slots) of the SPU write outbound mailbox queue.

Implementation Note:

The MFC must not acknowledge a write channel (wrch) instruction to the SPU Write Outbound Mailbox
Channel until a processor or device has read the contents of the mailbox.

Access Type Write-blocking

Channel Number x‘1C’

Mailbox Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Mailbox Data
Application-specific mailbox data
Each application can uniquely define the mailbox data.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 139 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.5.2 SPU Write Outbound Interrupt Mailbox Channel (SPU_WrOutIntrMbox)

A write channel (wrch) instruction to this channel writes data to the SPU write outbound interrupt mailbox
queue. The data written to this channel by the SPU is made available to an MMIO read of the SPU Outbound
Interrupt Mailbox Register (see page 237). (This register is located in the privilege 2 area of an SPE main
storage address domain.)

A write channel (wrch) instruction to this channel also causes the associated count to be decremented by 1.
Writing to a full SPU write outbound interrupt mailbox queue causes SPU execution to stall until the SPU
Outbound Interrupt Mailbox Register (see page 237) is read, freeing up a location in the SPU write outbound
interrupt mailbox queue. To avoid a stall condition, the channel count associated with this channel can be
read to ensure there is a slot in the SPU write outbound interrupt mailbox queue before issuing the channel
write. Alternatively, the SPU outbound interrupt mailbox available event can be used to signal the availability
of a slot in the SPU write outbound interrupt mailbox queue, if it was previously full.

A write channel (wrch) instruction that targets the SPU Write Outbound Interrupt Mailbox Channel also
causes an interrupt to be sent to a processor or other device. There is no ordering of the interrupt and previ-
ously-issued MFC SPU commands. For more information, see Section 21 Interrupt Facilities beginning on
page 261.

When the SPU write outbound interrupt mailbox queue is full, a read of the count associated with this channel
returns a value of 0. A nonzero count value indicates the number of 32-bit words free in this queue.

Privileged software initializes the count of this channel to the depth of the SPU write outbound interrupt
mailbox queue. This channel is write-blocking. The maximum count for this channel is implementation depen-
dent. It should be the depth (that is, the number of available slots) of the SPU write outbound interrupt
mailbox queue.

Implementation Note:

The MFC must not acknowledge a write channel (wrch) instruction to the SPU Write Outbound Interrupt Mail-
box Channel until a processor or other device has read the contents of the mailbox.

Access Type Write-blocking

Channel Number x‘1E’

Mailbox Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Mailbox Data
Application-specific mailbox data
Each application can uniquely define the mailbox data.
Synergistic Processor Unit Channels

Page 140 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.5.3 SPU Read Inbound Mailbox Channel (SPU_RdInMbox)

A read from this channel returns the next data in the SPU read inbound mailbox queue. Data is placed in the
SPU read inbound mailbox queue by a processor or device issuing a write to the SPU Inbound Mailbox
Register (see page 103).

Reading from the SPU Read Inbound Mailbox Channel also causes the associated count to be decremented
by 1. Reading an empty mailbox causes SPU execution to stall until the SPU Inbound Mailbox Register (see
page 103) is written, placing a data item in the SPU read inbound mailbox queue. To avoid the stall condition,
the channel count associated with this channel can be read to ensure there is data in the SPU read inbound
mailbox queue before issuing the channel read. Alternatively, the SPU inbound mailbox available event can
be used to signal the availability of data in the SPU read inbound mailbox queue.

When the mailbox is empty, reading the channel count (rchcnt) returns a value of 0. If the result of the rchcnt
is nonzero, then the mailbox contains information that has been written by a PPE but has not been read by a
SPU.

Privileged software initializes the channel count of the SPU Read Inbound Mailbox Channel to 0. The
maximum count for this channel is implementation dependent. This channel is read-blocking.

Access Type Read-blocking

Channel Number x‘1D’

Mailbox Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Mailbox Data
Application-specific mailbox data
Each application can uniquely define the mailbox data.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 141 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.6 SPU Signalling Channels

These channels are the SPU side of the SPU signal notification facility (see page 105). They are used to read
signals from other processors and other devices in the system. The signalling channels are configured as
read-blocking with a maximum count of 1.

When a read channel (rdch) instruction targets one of these channels and the associated channel count is 1,
the current contents of the channel and the associated count are reset to 0. When a read channel (rdch)
instruction targets one of these channels, and the channel count is 0, the SPU stalls until a processor or
device performs an MMIO write to the associated register.

Implementation Note:

When a signalling event coincides with a read of the signalling channel, hardware must ensure that the
proper state of the channel is maintained. In overwrite mode, hardware can either return the data associated
with the signalling event or the current contents of the channel (if the count is 1) for the read channel instruc-
tion. For logical OR mode, hardware can either return the data associated with the signalling event ORed with
the current contents of the channel or the current contents of the channel. If the signalling event data or the
logical OR of the event data and the current contents is returned, the channel count must end up as a 0. If the
current contents are returned, the channel count must end up as 1.
Synergistic Processor Unit Channels

Page 142 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.6.1 SPU Signal Notification 1 Channel (SPU_RdSigNotify1)

A read channel (rdch) instruction that targets the SPU Signal Notification 1 Channel returns the 32-bit value
of the Signal-Control Word field. It atomically resets any bits that were set when read. If no signals are
pending, a read from this channel stalls the SPU until a signal is issued.

If no signals are pending, a read channel count (rchcnt) instruction to this channel returns 0. If unread signals
are pending, it returns 1.

Privileged software initializes the count for this channel to a value of 0. This channel is read-blocking enabled
with a maximum count of 1.

Access Type Read-blocking

Channel Number x‘3’

SigCntlWord

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 SigCntlWord
Signal-control word.
The application defines the data. It can either be ORed with the previous value, or it can be over-
written.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 143 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.6.2 SPU Signal Notification 2 Channel (SPU_RdSigNotify2)

A read channel (rdch) instruction that targets the SPU Signal Notification 2 Channel returns the 32-bit value
of the Signal-Control Word field. It atomically resets any bits that were set when read. If no signals are
pending, a read from this channel stalls the SPU until a signal is issued.

A read channel count (rchcnt) instruction that targets this channel returns 0 if no signals are pending. It
returns 1 if unread signals are pending.

Privileged software initializes the count for this channel to a value of 0. This channel is read-blocking enabled
with a maximum count of 1.

Access Type Read-blocking

Channel Number x‘4’

SigCntlWord

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 SigCntlWord
Signal-control word.
The application defines the data. It can either be ORed with the previous value, or it can be over-
written.
Synergistic Processor Unit Channels

Page 144 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.7 SPU Decrementer

Each SPU contains a 32-bit decrementer. It is enabled in the MFC Control Register (see page 233) when
MFC_CNTL[Dh] is set to '0'. The SPU decrementer starts when a wrch instruction targets the SPU Write
Decrementer Channel. The decrementer is stopped by following the procedure described in Section 9.7.1, or
when MFC_CNTL[Dh] is set to '1'.

The current running status of the decrementer is available in the MFC Control Register (that is,
MFC_CNTL[Ds]). A decrementer event does not need to be pending for the decrementer to be stopped.

Note: The requirement for a constant rate for the time base and the decrementer is an additional require-
ment beyond the PowerPC Architecture. However, all SPU decrementers are required to run at the same rate
as the PPE decrementer, but there is no requirement that the decrementers be synchronized.

Two channels are assigned to manage the decrementer: one to set the decrementer value and one to read
the current contents of the decrementer. A decrementer event occurs when the most-significant bit (bit 0)
changes from a ‘0’ to a ‘1’.

9.7.1 SPU Write Decrementer Channel (SPU_WrDec)

The SPU Write Decrementer Channel is used to load a 32-bit value to the decrementer. The value loaded into
the decrementer determines the lapsed time between the write channel (wrch) instruction and the decre-
menter event. The event occurs when the most-significant bit of the decrementer changes from a ‘0’ to a ‘1’. If
the value loaded into the decrementer causes a change from ‘0’ to ‘1’ in the MSb, an event is signaled imme-
diately. Setting the decrementer to a value of 0 results in an event after a single decrementer interval.

For the state of the decrementer to be properly saved and restored, the decrementer must be stopped before
changing the decrementer value. The following procedure sets a new decrementer value.

1. Write to the SPU Write Event Mask Channel (see page 157) to disable the decrementer event.

2. Write to the SPU Write Event Acknowledgment Channel (see page 161) to acknowledge any pending
events and to stop the decrementer. The decrementer is stopped because the decrementer event has
been disabled in step 1.

3. Write to the SPU Write Decrementer Channel to set a new decrementer count value. (Note: The decre-
menter is started because step 2 stopped the decrementer.)

4. Write to the SPU Write Event Mask Channel (see page 157) to enable the decrementer event.

5. Wait for the timer to expire.

This channel is nonblocking and does not have an associated count. Whenever a read channel count
(rchcnt) instruction targets this channel, the count is always returned as 1.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 145 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.7.2 SPU Read Decrementer Channel (SPU_RdDec)

The SPU Read Decrementer Channel is used to read the current value of the 32-bit decrementer. Reading
the decrementer count has no effect on the accuracy of the decrementer. Successive reads of the decre-
menter can return the same value.

This channel is nonblocking and does not have an associated count. Whenever a read channel count
(rchcnt) instruction targets this channel, the count is always returned as 1.

Access Type Write

Channel Number x‘7’

Decrementer Count Value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Decrementer Count
Value Decrementer count value.

Access Type Read

Channel Number x‘8’

Decrementer Count Value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Decrementer Count
Value Decrementer count value.
Synergistic Processor Unit Channels

Page 146 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.8 SPU Read Machine Status Channel (SPU_RdMachStat)

The SPU Read Machine Status Channel contains the current SPU machine status information. This channel
contains two status bits: the isolation status and the SPU interrupt enable status. The isolation status reflects
the current operating state of the SPU, isolated or nonisolated. For more on SPU isolation, see Section 11
SPU Isolation Facility beginning on page 183.

The SPU interrupt enable status reflects the current state of the SPU interrupt enable. If an interrupt is
enabled and any enabled SPU event is present, an SPU interrupt is generated. For more information about
SPU events, see Section 9.11 SPU Event Facility on page 150.

For more information about the processing of SPU interrupts, see the Synergistic Processor Unit Instruction
Set Architecture document.

This channel is nonblocking and does not have an associated count. Whenever a read channel count
(rchcnt) instruction targets this channel, the count is always returned as 1.

Access Type Read

Channel Number x‘D’

Implementation Dependent Reserved IS IE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:15 Implementation
Dependent

16:29 Reserved Set to zeros.

30 IS
Isolation status.
0 The SPU is operating in a nonisolated state.
1 The SPU is operating in an isolated state.

31 IE

SPU interrupt enable status.
Interrupts can be enabled by setting the SPU_NPC[IE] bit to '1' while the SPU is stopped or by an
SPU instruction. See the Synergistic Processor Unit Instruction Set Architecture document for more
information about how to enable interrupts.
0 SPU interrupts disabled.
1 SPU interrupt enabled.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 147 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.9 SPU Interrupt-Related Channels

9.9.1 SPU Write State Save-and-Restore Channel (SPU_WrSRR0)

A write to this channel updates the contents of the State Save and Restore Register (SRR0) in the SPU. For
more information, see the Synergistic Processor Unit Instruction Set Architecture document. A write to this
channel is typically used to restore interrupt-state information when nested interrupts are supported.

This channel should not be written when SPU interrupts are enabled. Doing so can result in the contents of
SRR0 being indeterminate. The sync.c instruction (a channel form of the sync instruction) must be issued
after writing this channel and before the execution of instructions that are dependent upon the SRR0
contents.

This channel is nonblocking and does not have an associated count. Whenever a read channel count
(rchcnt) instruction targets this channel, the count is always returned as 1.

9.9.2 SPU Read State Save-and-Restore Channel (SPU_RdSRR0)

A read of this channel returns the contents of the State Save and Restore Register (SRR0) in the SPU. A
read of this channel is typically used to save interrupt-state information when nested interrupts are supported.
(For more information, see the Synergistic Processor Unit Instruction Set Architecture document.)

This channel is nonblocking and does not have an associated count. Whenever a read channel count
(rchcnt) instruction targets this channel, the count is always returned as 1.

Access Type Write

Channel Number x‘E’

SRR0 Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 SRR0 Data State save/restore register 0 data.

Access Type Read

Channel Number x‘F’

SRR0 Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 SRR0 Data State save/restore register 0 data.
Synergistic Processor Unit Channels

Page 148 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.10 MFC Write Multisource Synchronization Request Channel
(MFC_WrMSSyncReq)

The MFC Write Multisource Synchronization Request Channel is part of the MFC multisource synchroniza-
tion facility (see page 108). It causes the MFC to start tracking outstanding transfers sent to the associated
MFC. When the synchronization requested by a write of this channel is complete, the channel count is set
back to 1. The data written to this channel is ignored; however, software should write a value of 0 for compat-
ibility with future enhancements.

A second write to this channel results in the SPU being stalled until the outstanding transfers being tracked by
the first write are complete.

To use the MFC Write Multisource Synchronization Request Channel, a program must perform the following
steps:

1. Write to the MFC Write Multisource Synchronization Request Channel.

2. Wait for the MFC Write Multisource Synchronization Request Channel to become available (that is, when
the channel count is set back to 1).

Software initializes the count for this channel to a value of 1. This channel is write-blocking enabled with a
maximum count of 1.

Access Type Write-blocking

Channel Number x‘9’

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:31 Reserved Reserved.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 149 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.11 SPU Event Facility

An SPU program can monitor events by using the following channels:

• SPU Read Event Status Channel (see page 153)
• SPU Write Event Mask Channel (see page 157)
• SPU Read Event Mask Channel (see page 159)
• SPU Write Event Acknowledgment Channel (see page 161)

The SPU Read Event Status Channel contains the status of all events enabled in the SPU Write Event Mask
Channel. The SPU Write Event Acknowledgment Channel is used to reset the status of an event, which typi-
cally indicates that the event has been processed or recorded by the SPU program. If no enabled events are
present, reading from the SPU Read Event Status Channel stalls the SPU program. While individual events
have a similar methods for stalling the SPU program, if the event has not occurred, the SPU event facility
provides software with a method to look for multiple events and to cause an interrupt of the SPU program.

Several events can be monitored. For more information about these events, see Section 9.12 SPU Event
Definitions beginning on page 163.

Figure 9-1 on page 151 is a logical representation of the function of each channel that supports the SPU
event facility.

Programming Note:

When using the SPU event facility, software should avoid any conditions that might prevent an expected
event from being presented to an SPU. An error condition, for example, might prevent an event from being
presented. Software should also be designed to handle this situation if it does occur. Otherwise, the SPU
could stall indefinitely while waiting for an event. To break out of an indefinite wait, the software design should
include some form of a watchdog timer (contact your system provider about the preferred form of the
watchdog timer). The specific actions software takes if the watchdog timer expires before the expected event
takes place are implementation dependent. See Section 9.12.10 on page 170 for a description of a specific
condition that can occur when using the lock line reservation lost event.
Synergistic Processor Unit Channels

Page 150 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
Figure 9-1. Logical Representation of SPU Event Support

 Edge Triggered Events

Channel Write to SPU
Write Event Acknowledgment

SPU Write Event Acknowledgment Channel written using a wrch instruction (pulse)

SPU Interrupt

(max value = 1)

SPU Write Event Mask Channel written using a wrch instruction (pulse)

Enabled events still pending after either a

AND

OR

SPU Channel Access Facility Data
(Data written to SPU Channel Data Register
with SPU Channel Index Register set to x‘0’)

 Pending Event[x]

SPU_WrEventAck[x]Event[x]

SPU Channel Access Facility Data
(Data read from SPU Channel Data Register
with SPU Channel Index Register set to x‘0’)

Channel Write to
SPU Write Event Mask

AND

SPU_WrEventMask

Channel Read from
SPU Read Event Mask

or
SPU Channel Access Facility Data
(Data read from SPU Channel Data Register
with SPU Channel Index Register set to x‘1’)

(bitwise AND)

Channel Read from
SPU Read Event Status

SPU_RdEvent Mask

SPU_RdEventStat

OR (OR of all event status bits)

(pulse on

(set)

SPU_ChnlData[x]

(load)

OR

AND

edge)

AND (bitwise AND)

 Edge Triggered Events

(pulse on
edge)

OR
(OR of all enabled
events)

OR

SPU Read Event Status

(Increment)

Channel Count

Channel Read from
SPU Read Event Status

(Decrement)

cmp <> 0

Channel Count Read from
SPU Read Event Status

or
SPU Channel Access Facility Data
(Data read from SPU Channel Count Register
with SPU Channel Index Register set to x‘0’)

AND

SPU Interrupt Enable
 SPU_RdMachStat[IE]

- Channel write to the SPU Write Event Mask Channel or
- Channel write to the SPU Acknowledgment Channel

(Duplicated for
each event)

(reset)

Pending Event Logic

SPU Read Event Status Channel read using a rdch instruction (pulse)

Pend_Event
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 151 of 358

User Mode Environment

Cell Broadband Engine Architecture
As illustrated in Figure 9-1 on page 151, an edge-triggered event sets a corresponding bit in the SPU
Pending Event Register to a ‘1’. Events in the SPU Pending Event Register are acknowledged, or reset, by
writing a ‘1’ to the corresponding bit in the SPU Write Event Acknowledgment Channel (see page 161) using
a write channel instruction.

The SPU Pending Event Register (Pend_Event) is an internal register. The format of the SPU Pending Event
Register is the same as the SPU Read Event Status Channel (see page 153). The SPU Pending Event
Register can be read using the SPU channel access facility (see page 242). Reading the SPU Read Event
Status Channel with the read channel (rdch) instruction returns the value of the SPU Pending Event Register
logically ANDed with the value in the SPU Write Event Mask Channel (see page 157). This function provides
an SPU program with only the status of the enabled events. The SPU Pending Event Register, however,
allows privileged software to see all the events that have occurred. Access to all events is required for an
SPE context save and restore operation.

The contents of the SPU Read Event Status Channel (see page 153) change when the SPU Write Event
Mask Channel is written with a new value, or when a new event is recorded in the SPU Pending Event
Register. Any transition of a bit from ‘0’ to ‘1’ in the SPU Read Event Status Channel increments the SPU
Read Event Status Channel count by 1. The count also increments if an event is still set in the SPU Read
Event Status Channel after a write to the SPU Write Event Acknowledgment Channel (see page 161). The
count is decremented by 1 when the SPU Read Event Status Channel is read using a read channel (rdch)
instruction. The count saturates at a value of 1, and is not decremented below a value of 0.

When the SPU Read Event Status Channel count is nonzero, an interrupt condition is sent to the SPU, if the
interrupt is enabled. The Synergistic Processor Unit Instruction Set Architecture document describes
enabling, disabling, and processing an interrupt.

Programming Note:

Software should acknowledge all events to be processed before processing the events. For example, a
pending SPU inbound mailbox available event should be acknowledged before reading the SPU Read
Inbound Mailbox Channel. If an SPU inbound mailbox available event and an SPU signal notification 1 avail-
able event are to be processed, both events should be acknowledged in the same write to the SPU Write
Event Acknowledgment Channel before reading the SPU Signal Notification 1 Channel. If each event was
acknowledged separately, the event status count would be incremented unnecessarily and a phantom inter-
rupt would be sent, if interrupts are enabled (that is, SPU_RdMachStat[IE]).
Synergistic Processor Unit Channels

Page 152 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.11.1 SPU Read Event Status Channel (SPU_RdEventStat)

The SPU Read Event Status Channel contains the current status of all events enabled by the SPU Write
Event Mask Channel (see page 157) at the time this channel is read. If the SPU Write Event Mask Channel
specifies that an event is not part of the query, then its corresponding position is ‘0’ in the reported status.

A read from the SPU Read Event Status Channel when it has a channel count of 0 results in an SPU stall;
thereby providing a “wait on event” function. A read from this channel when it has a channel count of 1 returns
the status of any enabled, pending events and sets the channel count to 0. The channel count is set to 1 for
the following conditions:

• An event occurs, and the corresponding mask is ‘1’ in the SPU Write Event Mask Channel (see page
157).

• The SPU Write Event Mask Channel is written with a ‘1’ in a bit position that corresponds to a ‘1’ in the
SPU Pending Event Register.

• Enabled events are pending after a write of the SPU Write Event Acknowledgment Channel (see page
161).

• Privileged software sets the channel count to 1 using the SPU channel access facility (see page 242).

If no enabled events have occurred, a read channel count (rchcnt) instruction that targets the SPU Read
Event Status Channel returns zeros. A read channel count (rchcnt) instruction can be used to avoid stalling
the SPU when reading the event status from the SPU Read Event Status Channel. The channel count of the
SPU Read Event Status Channel is also used as the condition in the branch indirect and set link if external
data (bisled) instruction. If the SPU Read Event Status Channel count is 0, the branch is not taken. For more
information about the bisled instruction, see the Synergistic Processor Unit Instruction Set Architecture docu-
ment.

Privileged software must initialize the count value of the SPU Read Event Status Channel to 0.1 The channel
count is initialized using the SPU Channel Count Register in the SPU channel access facility (see page 242).

If SPU interrupts are enabled (SPU_RdMachStat[IE] set to ‘1’), a nonzero SPU Read Event Status Channel
count results in an interrupt targeting the SPU.

1. The SPU Read Event Status Channel has a depth of one. Therefore, its count can be only 0 or 1. The count is set to 1 by
privileged software when restoring an SPE context with enabled, pending events.

Access Type Read-blocking

Channel Number x‘0’

Reserved Ms A Lr S1 S2 Le Me Tm Mb Qv R
es

er
ve

d

Sn Tg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:18 Reserved Reserved.

Note: For more information about these events, see Section 9.12 SPU Event Definitions on page 163.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 153 of 358

User Mode Environment

Cell Broadband Engine Architecture
19 Ms

Multisource synchronization event
This event is triggered when the multisource synchronization request has completed. The multi-
source synchronization request completes when all pending transfers before a write of the MFC
Write Multisource Synchronization Request Channel (see page 149) have completed. This event is
triggered immediately if no transfers are pending at the time of the MFC Write Multisource Synchro-
nization Request Channel write.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

20 A

Privileged attention event
This event is triggered by setting the SPU Attention-Event Request bit in the SPU Privileged Control
Register. Access to this register should be limited to privileged software.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

21 Lr

Lock line reservation lost event
This event is triggered when a get lock-line and reserve (getllar) command is issued, and the reser-
vation is reset due to the modification of data in the same lock line by an outside entity. It is not set
due to a reservation reset by a local action.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.
This event is set when a snoop external to the MFC causes a lock-line reservation to be reset. The
event must not be set if the reservation is lost due to a local action.

22 S1

SPU signal notification 1 available event
This event is triggered when a processor or a device writes to the SPU Signal Notification 1 Regis-
ter of the corresponding SPU.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

23 S2

SPU signal notification 2 available event
This event is triggered when a processor or a device writes to the SPU Signal Notification 2 Regis-
ter of the corresponding SPU.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

24 Le

SPU outbound mailbox available event
This event is triggered when the SPU Write Outbound Mailbox Channel count becomes greater
than or equal to an implementation-dependent mailbox queue-empty threshold.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

25 Me

SPU outbound interrupt mailbox available event
This event is triggered when the SPU Write Outbound Interrupt Mailbox Channel count becomes
greater than or equal to an implementation-dependent interrupt-mailbox queue-empty threshold.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

26 Tm

SPU decrementer event
This event is triggered by the transition of the most-significant bit of the SPU decrementer count
from ‘0’ to ‘1’.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

27 Mb

SPU inbound mailbox available event
This event is triggered when the SPU Read Inbound Mailbox Channel count transitions from 0 to a
nonzero value.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

Bits Field Name Description

Note: For more information about these events, see Section 9.12 SPU Event Definitions on page 163.
Synergistic Processor Unit Channels

Page 154 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
Programming Notes:

Software can cause phantom events in two instances:

1. If software acknowledges or masks an event after the event has incremented the SPU Read Event Status
Channel count, before reading the event status from the SPU Read Event Status Channel. In this case,
reading the SPU Read Event Status Channel returns data that indicates that the event is no longer
present or is disabled.

2. If software resets the interrupting condition of an enabled event (such as reading from a mailbox) before
reading the SPU Read Event Status Channel and before acknowledging the event. In this case, reading
the event-status register returns data that indicates that the event is still pending, even though the condi-
tion that generated the event is no longer present. In this case, the event must still be acknowledged.

To avoid generating phantom events, events should be handled as follows:

• Read the SPU Read Event Status Channel.

• For all events that are to be processed, acknowledge the events by writing the corresponding bits to the
SPU Write Event Acknowledgment Channel (see page 161).

• Process the events (for example, read the mailbox, reset, or stop the timer, or read a signal notification
register).

28 Qv

MFC SPU command queue available event
This event is triggered by the transition of the MFC SPU command queue from a full state to a not-
full state.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

29 Reserved Reserved

30 Sn

MFC list command stall-and-notify event
This event occurs when the MFC encounters one or more list commands with the stall-and-notify
flag set in the list elements (see Section 7.4 List Commands and List Elements beginning on page
63). When this type of MFC command is encountered, the list element is completed. Further list pro-
cessing is suspended until the stall is acknowledged by the SPU program.
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

31 Tg

MFC tag-group status update event
The tag status event occurs when MFC Read Tag-Group Status Channel (see page 133) is updated
based on the tag status update requested by writing the MFC Write Tag Status Update Request
Channel (see page 132).
0 Event has not occurred.
1 Event has occurred and has not been acknowledged.

Bits Field Name Description

Note: For more information about these events, see Section 9.12 SPU Event Definitions on page 163.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 155 of 358

User Mode Environment

Cell Broadband Engine Architecture
Implementation Note:

Hardware determines events by detecting the appropriate channel counts, decrementer count, or SPU
channel access operation as described in the following list. (See Figure 9-1 Logical Representation of SPU
Event Support on page 151 for an illustration of how the events, channels, and registers interact.)

• The MFC tag-group status update event is set when the count for the MFC Read Tag-Group Status
Channel (see page 133) changes from 0 to a nonzero value.

• The MFC list command stall-and-notify event is set when the count for the MFC Read List Stall-and-
Notify Tag Status Channel (see page 135) changes from 0 to a nonzero value.

• The MFC SPU command queue available event is set when the count for the queued MFC Command
Opcode Register (see page 81) changes from 0 (full) to a nonzero (not full) value.

• The SPU inbound mailbox available event is set when the count for the SPU Read Inbound Mailbox
Channel (see page 141) changes from 0 to a nonzero value.

• The SPU decrementer event is set when the most-significant bit of the decrementer count changes from
‘0’ to ‘1’. If a value loaded into the decrementer causes a change from ‘0’ to ‘1’ in the MSb, an event is sig-
naled immediately. Setting the decrementer to a value of 0 results in an event after a single decrementer
interval.

• The SPU outbound mailbox available event is set when the SPU Write Outbound Mailbox Channel (see
page 139) count changes from 0 to a nonzero value.

• The SPU outbound interrupt mailbox available event is set when the SPU Write Outbound Interrupt Mail-
box Channel (see page 140) count changes from 0 to a nonzero value.

• The SPU signal notification 2 available event is set when the count for the SPU Signal Notification 2
Channel (see page 144) changes from 0 to a nonzero value.

• The SPU signal notification 1 available event is set when the count for the SPU Signal Notification 1
Channel (see page 143) changes from 0 to a nonzero value.

• The lock line reservation lost event is set when SPU Pending Event Register [LR] is set to ‘1’. The SPU
Pending Event Register is an internal register. The format of the SPU Pending Event Register is the
same as the SPU Read Event Status Channel (see page 153).

• The privileged attention event is set when the SPU Privileged Control Register (see page 239) is written
with the Attention-Event Request bit set to ‘1’.

• The multisource synchronization event is set when MFC Write Multisource Synchronization Request
Channel (see page 149) count changes from a value of 0 to 1.
Synergistic Processor Unit Channels

Page 156 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.11.2 SPU Write Event Mask Channel (SPU_WrEventMask)

The SPU Write Event Mask Channel selects which pending events affect the state of the SPU Read Event
Status Channel (see page 153). The contents of this channel are retained until a subsequent channel write or
an SPU channel access occurs. The current contents of this channel can be accessed by reading the SPU
Read Event Mask Channel (see page 159).

All events are recorded in the SPU Pending Event Register, regardless of the SPU write event mask setting.
Events remain pending until cleared by a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel (see page 161) or until privileged software loads the SPU Pending Event Register with a
new value using the SPU channel access facility (see page 242). A pending event is cleared even if it is
disabled.

Pending events that are disabled and subsequently cleared are not reflected in the SPU Read Event Status
Channel (see page 153). Enabling a pending event results in an update of the SPU Read Event Status
Channel and an SPU interrupt, if the interrupt is enabled.

This channel is nonblocking and does not have an associated count. A read channel count (rchcnt) instruc-
tion of this channel always returns 1.

Access Type Write

Channel Number x‘1’

Reserved Ms A Lr S1 S2 Le Me Tm Mb Qv R
es

er
ve

d

Sn Tg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:18 Reserved Reserved.

19 Ms
Multisource synchronization event enable.
0 Event is disabled.
1 Event is enabled.

20 A
Privileged attention event enable.
0 Event is disabled.
1 Event is enabled.

21 Lr
Lock line reservation lost event enable.
0 Event is disabled.
1 Event is enabled.

22 S1
SPU signal notification 1 available event enable.
0 Event is disabled.
1 Event is enabled.

23 S2
SPU signal notification 2 available event enable.
0 Event is disabled.
1 Event is enabled.

Note: For more information about these events, see Section 9.12 SPU Event Definitions beginning on page 163.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 157 of 358

User Mode Environment

Cell Broadband Engine Architecture
Implementation Note:

The SPU decrementer must stop if the SPU decrementer event (bit 26) is disabled when an SPU decre-
menter event is acknowledged. The SPU decrementer event is acknowledged by writing a ‘1’ to bit 26 of the
SPU Write Event Acknowledgment Channel (see page 161). The decrementer must stop regardless of the
status of the SPU decrementer event at the time of the acknowledgment. The SPU decrementer must not
stop if the SPU decrementer event is enabled when the event is acknowledged. Once the SPU decrementer
is stopped, no further SPU decrementer events can occur.

24 Le
SPU outbound mailbox available event enable.
0 Event is disabled.
1 Event is enabled.

25 Me
SPU outbound interrupt mailbox available event enable.
0 Event is disabled.
1 Event is enabled.

26 Tm

SPU decrementer event enable.
Setting this bit to ‘0’ before acknowledging a decrementer event results in the decrementer being
stopped, regardless of the decrementer event status. See Section 9.7 on page 145 for more details
0 Event is disabled.
1 Event is enabled.

27 Mb
SPU inbound mailbox available event enable.
0 Event is disabled.
1 Event is enabled.

28 Qv
MFC SPU command queue available event enable.
0 Event is disabled.
1 Event is enabled.

29 Reserved Reserved.

30 Sn
MFC list command stall-and-notify event enable.
0 Event is disabled.
1 Event is enabled.

31 Tg
MFC tag-group status update event enable.
0 Event is disabled.
1 Event is enabled.

Bits Field Name Description

Note: For more information about these events, see Section 9.12 SPU Event Definitions beginning on page 163.
Synergistic Processor Unit Channels

Page 158 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.11.3 SPU Read Event Mask Channel (SPU_RdEventMask)

The SPU Read Event Mask Channel is used to read the current value of the event status mask. Reading this
channel always returns the last data written by the SPU Write Event Mask Channel (see page 157).

The SPU Read Event Mask Channel allows software to read the state of the event status mask. This channel
can be used to avoid software shadow copies of the event status mask and for SPE context save and restore
operations.

This channel is nonblocking and does not have an associated count. Whenever a read channel count
(rchcnt) instruction targets this channel, the count is always returned as 1.

Access Type Read

Channel Number x‘B’

Reserved Ms A Lr S1 S2 Le Me Tm Mb Qv R
es

er
ve

d

Sn Tg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:18 Reserved Reserved.

19 Ms
Multisource synchronization event enable.
0 Event is disabled.
1 Event is enabled.

20 A
Privileged attention event enable.
0 Event is disabled.
1 Event is enabled.

21 Lr
Lock line reservation lost event enable.
0 Event is disabled.
1 Event is enabled.

22 S1
SPU signal notification 1 available event enable.
0 Event is disabled.
1 Event is enabled.

23 S2
SPU signal notification 2 available event enable.
0 Event is disabled.
1 Event is enabled.

24 Le
SPU outbound mailbox available event enable.
0 Event is disabled.
1 Event is enabled.

25 Me
SPU outbound interrupt mailbox available event enable.
0 Event is disabled.
1 Event is enabled.

26 Tm
SPU decrementer event enable.
0 Event is disabled.
1 Event is enabled.

Note: For more information about these events, see Section 9.12 SPU Event Definitions beginning on page 163.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 159 of 358

User Mode Environment

Cell Broadband Engine Architecture
27 Mb
SPU inbound mailbox available event enable.
0 Event is disabled.
1 Event is enabled.

28 Qv
MFC SPU command queue available event enable.
0 Event is disabled.
1 Event is enabled.

29 Reserved Reserved.

30 Sn
MFC list command stall-and-notify event enable.
0 Event is disabled.
1 Event is enabled.

31 Tg
MFC tag-group status update event enable.
0 Event is disabled.
1 Event is enabled.

Bits Field Name Description

Note: For more information about these events, see Section 9.12 SPU Event Definitions beginning on page 163.
Synergistic Processor Unit Channels

Page 160 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.11.4 SPU Write Event Acknowledgment Channel (SPU_WrEventAck)

A write to the SPU Write Event Acknowledgment Channel, with specific event bits set, acknowledges that the
corresponding events are being serviced by the software. Events that have been acknowledged are reset and
resampled. Events that have been reported, but not acknowledged, continue to be reported until acknowl-
edged or until cleared by privileged software using the SPU channel access facility (see page 242).

Disabled events are not reported in the SPU Read Event Status Channel (see page 153). Instead, they are
held pending until they are cleared by writing a '1' to the corresponding bit in the SPU Write Event Acknowl-
edgment Channel. Acknowledging a disabled event clears the event, even though it has not been reported.
Clearing an event before it occurs can result in a software-induced deadlock. Software should be careful in
clearing unreported events. For more on handling these events, see Section 9.11 SPU Event Facility begin-
ning on page 150. For more on the events themselves, see Section 9.12 SPU Event Definitions beginning on
page 163.

This channel is nonblocking and does not have an associated count. Whenever a read channel count
(rchcnt) instruction targets this channel, the count is always returned as 1.

Access Type Write

Channel Number x‘2’

Reserved Ms A Lr S1 S2 Le Me Tm Mb Qv R
es

er
ve

d

Sn Tg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:18 Reserved Reserved.

19 Ms
Multisource synchronization event acknowledgment.
0 Event not acknowledged.
1 Event acknowledged.

20 A
Privileged attention event acknowledgment.
0 Event not acknowledged.
1 Event acknowledged.

21 Lr
Lock line reservation lost event acknowledgment.
0 Event not acknowledged.
1 Event acknowledged.

22 S1
SPU signal notification 1 available event acknowledgment.
0 Event not acknowledged.
1 Event acknowledged.

23 S2
SPU signal notification 2 available event acknowledgment
0 Event not acknowledged.
1 Event acknowledged.

24 Le
SPU outbound mailbox available event acknowledgment
0 Event not acknowledged.
1 Event acknowledged.

Note: For more information about these events, see Section 9.12 SPU Event Definitions beginning on page 163.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 161 of 358

User Mode Environment

Cell Broadband Engine Architecture
Implementation Note:

The SPU decrementer stops if the SPU decrementer event (bit 26) is disabled when an SPU decrementer
event is acknowledged. The SPU decrementer event is acknowledged by writing a ‘1’ to bit 26 of the SPU
Write Event Acknowledgment Channel. The decrementer stops regardless of the status of the SPU decre-
menter event at the time of the acknowledgment. The decrementer does not stop if the SPU decrementer
event is enabled when the event is acknowledged. Once the decrementer is stopped, no further SPU decre-
menter events occur. See Section 9.7.1 beginning on page 145 for more details.

25 Me
SPU outbound interrupt mailbox available event acknowledgment
0 Event not acknowledged.
1 Event acknowledged.

26 Tm
SPU decrementer event acknowledgment.
0 Event not acknowledged.
1 Event acknowledged.

27 Mb
SPU inbound mailbox available event acknowledgment
0 Event not acknowledged.
1 Event acknowledged.

28 Qv
MFC SPU command queue available event acknowledgment.
0 Event not acknowledged.
1 Event acknowledged.

29 Reserved Reserved.

30 Sn
MFC list command stall-and-notify event acknowledgment.
0 Event not acknowledged.
1 Event acknowledged.

31 Tg
MFC tag-group status update event acknowledgment.
0 Event not acknowledged.
1 Event acknowledged.

Bits Field Name Description

Note: For more information about these events, see Section 9.12 SPU Event Definitions beginning on page 163.
Synergistic Processor Unit Channels

Page 162 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9.12 SPU Event Definitions

The SPU events follow:

• MFC Tag-Group Status Update Event
• MFC List Command Stall-and-Notify Event
• MFC SPU Command Queue Available Event (see page 165)
• SPU Inbound Mailbox Available Event (see page 166)
• SPU Decrementer Event (see page 166)
• SPU Outbound Interrupt Mailbox Available Event (see page 167)
• SPU Outbound Mailbox Available Event (see page 168)
• SPU Signal Notification 2 Available Event (see page 169)
• SPU Signal Notification 1 Available Event (see page 170)
• Lock Line Reservation Lost Event (see page 170)
• Privileged Attention Event (see page 172)
• Multisource Synchronization Event (see page 172)

9.12.1 MFC Tag-Group Status Update Event

The MFC tag-group status update event is used to notify an SPU program that a tag group or groups have
completed. It also notifies an SPU program that the MFC Read Tag-Group Status Channel (see page 133)
has been updated and can be read without stalling the SPU. See Section 9.3 MFC Tag-Group Status Chan-
nels beginning on page 126 for more information.

The event occurs when the channel count for the MFC Read Tag-Group Status Channel changes from 0 to 1.
When this event occurs, it sets Pend_Event[Tg] to ‘1’. If the event is enabled (that is, SPU_RdEventMask[Tg]
is set to ‘1’), the count for the SPU Read Event Status Channel is set to 1 and SPU_RdEventStat[Tg] is set to
‘1’.

The Pend_Event[Tg] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel. It is also set to ‘0’ when privileged software updates the SPU Pending Event Register using
the SPU channel access facility with the corresponding bit set to ‘0’.

This event must be cleared before issuing any commands for the tag group or groups. For more information
about the procedure for using the SPU Tag-Group Status Update event, see Section 9.3 MFC Tag-Group
Status Channels beginning on page 126.

9.12.2 MFC List Command Stall-and-Notify Event

The MFC list command stall-and-notify event is used to notify an SPU program that a list element within a list
command has completed. It also notifies an SPU program that the MFC Read List Stall-and-Notify Tag Status
Channel (see page 135) has been updated and can be read without stalling the SPU. See Section 7.4 List
Commands and List Elements beginning on page 63 for more information.

The event occurs when the channel count for the MFC Read List Stall-and-Notify Tag Status Channel
changes from 0 to 1. The count is set to 1 when all the transfers of the list elements with the stall-and-notify
flag set, as well as the transfers for all the previous list elements in the list command, are complete with
respect to the associated SPE. When this event occurs, it sets Pend_Event[Sn] to ‘1’. If the event is enabled
(that is, SPU_RdEventMask[Sn] is set to ‘1’), the count for the SPU Read Event Status Channel is set to 1
and SPU_RdEventStat[Sn] is set to ‘1’.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 163 of 358

User Mode Environment

Cell Broadband Engine Architecture
The Pend_Event[Sn] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the Sn bit set (that is, SPU_WrEventAck[Sn] is set to ‘1’). It is also set when privileged
software updates the SPU Pending Event Register using the SPU channel access facility with the corre-
sponding bit set to ‘0’.

The following procedure handles the MFC list command stall-and-notify event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[Sn] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[Sn] set to ‘1’.1

4. Issue a read channel (rdch) instruction to the MFC Read List Stall-and-Notify Tag Status Channel
MFC_RdListStallStat[gn].

5. Use this information to determine which tag group or tag groups have a list element in the Stall-and-Notify
state.

6. Perform the application-specific action with respect to each tag group that has a stalled list element.
Note: In the following instances, it is essential for the application software to initialize a tag-group spe-
cific stall counter to 0 before the list commands are queued for the tag group:

• When an MFC list contains multiple list elements having the stall-and-notify flag set

• When a tag group has multiple list commands queued, with elements having the stall-and-notify flag
set

In addition, when multiple list commands are queued for a tag group with stall-and-notify elements, order-
ing must be enforced with tag-specific fences, barriers, or the command barrier. Each time a Stall-and-
Notify status is indicated for a tag group, the corresponding counter should be incremented. Application
software can then use this counter to determine at what point in the list the stall has occurred. Application
software uses stall-and-notify to update list element addresses and transfer sizes that follow the list ele-
ment that has stalled due to dynamically changing conditions. List elements after the stalled list element
can be skipped by setting their transfer sizes to 0. However the number of list elements in a queued list
command cannot be changed.

7. Acknowledge and resume each stalled list command by issuing a write channel (wrch) instruction to the
MFC Write List Stall-and-Notify Tag Acknowledgment Channel (MFC_WrListStallAck[MFC Tag]) where
the supplied MFC Tag is the encoded tag ID of the tag group to be resumed.

8. Exit the MFC list stall-and-notify handler.
Note: If application software does not acknowledge all stalled tag groups indicated in the
MFC_RdListStallStat[gn] channel, a second stall-and-notify event does not occur for the unacknowledged
tag group.

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Synergistic Processor Unit Channels

Page 164 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
9. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[Sn] set to ‘1’.1

10. Exit the general event handler.1

9.12.3 MFC SPU Command Queue Available Event

The MFC SPU command queue available event is used to notify an SPU program that an entry in the MFC
SPU command queue is available and that the MFC Command Opcode Channel (see page 117) can be
written without stalling the SPU.

The event occurs when the channel count for the MFC Command Opcode Channel changes from a 0 (full) to
a nonzero (not full) value. The count is incremented when an MFC DMA command in the MFC SPU
command queue is completed. When this event occurs, it sets Pend_Event[Qv] to ‘1’. If the event is enabled
(that is, SPU_RdEventMask[Qv] is set to ‘1’), the count for the SPU Read Event Status Channel is set to 1
and SPU_RdEventStat[Qv] is set to ‘1’.

The Pend_Event[Qv] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the Qv bit set (that is, SPU_WrEventAck[Qv] is set to ‘1’). It is also set to ‘0’ when privi-
leged software updates the SPU Pending Event Register using the SPU channel access facility with the
corresponding bit set to ‘0’.

The following procedure handles the MFC SPU command queue available event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[Qv] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[Qv] set to ‘1’.

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the MFC Command
Opcode Channel (MFC_Cmd).

5. If the channel count is 0, skip to step 8.

6. Enqueue a DMA command to the MFC SPU command queue.

7. If more commands are left to queue, return to step 3.

8. Exit the MFC SPU command queue handler.

9. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[Qv] set to ‘1’.1

10. Exit the general event handler.1

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 165 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.12.4 SPU Inbound Mailbox Available Event

The SPU inbound mailbox available event is used to notify an SPU program that a PPE or other device has
written to an empty SPU mailbox and that the SPU Read Inbound Mailbox Channel (see page 141) can be
read without stalling the SPU.

The event occurs when the channel count for the SPU Read Inbound Mailbox Channel changes from 0
(empty) to a nonzero (not empty) value. When this event occurs, it sets Pend_Event[Mb] to ‘1’. If this event is
enabled (that is, SPU_RdEventMask[Mb] is ‘1’), the count for the SPU Read Event Status Channel is set to 1
and SPU_RdEventStat[Mb] is set to ‘1’.

The Pend_Event[Mb] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the Mb bit set (that is, SPU_WrEventAck[Mb] is set to ‘1’). It is also set to ‘0’ when privi-
leged software updates the SPU Pending Event Register using the SPU channel access facility with the
corresponding bit set to ‘0’.

The following procedure handles the SPU inbound mailbox available event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[Mb] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[Mb] set to ‘1’.1

4. Obtain a channel count by issuing a read channel count (rchcnt) instruction to the SPU Read Inbound
Mailbox Channel.

5. If the channel count is 0, skip to step 8.

6. Read next mailbox data entry by issuing a read channel (rdch) instruction to the SPU Read Inbound Mail-
box Channel (SPU_RdInMbox).

7. Return to step 3.

8. Exit the SPU inbound mailbox handler.

9. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[Mb] set to ‘1’.1

10. Exit the general event handler.1

9.12.5 SPU Decrementer Event

The SPU decrementer event is used to notify an SPU program that the decrementer has reached 0. See
Section 9.7.1 SPU Write Decrementer Channel beginning on page 145 for more information.

The event occurs when the most-significant bit of the decrementer changes from ‘0’ to ‘1’ (negative) value.
When this event occurs, it sets Pend_Event[Tm] to ‘1’. If the event is enabled (that is,
SPU_RdEventMask[Tm] is set to ‘1’), the count for the SPU Read Event Status Channel is set to 1 and
SPU_RdEventStat[Tm] is set to ‘1’.

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Synergistic Processor Unit Channels

Page 166 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
The Pend_Event[Tm] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the Tm bit set (that is, SPU_WrEventAck[Tm] is set to ‘1’). It is also set to ‘0’ when privi-
leged software updates the SPU Pending Event Register using the SPU channel access facility with the
corresponding bit set to ‘0’.

The following procedure handles the SPU decrementer event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[Tm] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel (SPU_WrEventAck[Tm] set to ‘1’).

4. Read the decrementer value by issuing a read channel (rdch) instruction to the SPU Read Decrementer
Channel. If this value is negative, it can be used to determine how much additional time has elapsed from
the required interval.

5. If a new timer event is required, write (wrch) a new decrementer value to the SPU Write Decrementer
Channel.

6. Exit the SPU decrementer event handler.

7. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[Tm] set to ‘1’.1

8. Exit the general event handler.1

9.12.6 SPU Outbound Interrupt Mailbox Available Event

The SPU outbound interrupt mailbox available event is used to notify an SPU program that a PPE or another
device has read from a full SPU Outbound Interrupt Mailbox Register (see page 237) and that the SPU Write
Outbound Interrupt Mailbox Channel (see page 140) can be written without stalling the SPU.

The event occurs when the channel count for the SPU Write Outbound Interrupt Mailbox Channel changes
from 0 (full) to a nonzero (not full) value. When this event occurs, it sets Pend_Event[Me] to ‘1’. If this event is
enabled (that is, SPU_RdEventMask[Me] is set to ‘1’), the count for the SPU Read Event Status Channel is
set to 1 and SPU_RdEventStat[Me] is set to ‘1’.

The Pend_Event[Me] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the Me bit set (that is, SPU_WrEventAck[Me] is set to ‘1’). It is also set to ‘0’ when privi-
leged software updates the SPU Pending Event Register using the SPU channel access facility with the
corresponding bit set to ‘0’.

The following procedure handles the SPU outbound interrupt mailbox available event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[Me] set to ‘0’.1

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 167 of 358

User Mode Environment

Cell Broadband Engine Architecture
3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[Me] set to a ‘1’.1

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the SPU Write Out-
bound Interrupt Mailbox Channel (see page 140).

5. If the channel count is 0, skip to step 7.

6. Write a new mailbox data entry by issuing a write channel (wrch) instruction to the SPU Write Outbound
Interrupt Mailbox Channel (see page 140).

7. Exit the SPU Outbound Interrupt Mailbox Available handler.

8. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[Me] set to ‘1’.1

9. Exit the general event handler.1

9.12.7 SPU Outbound Mailbox Available Event

The SPU outbound mailbox available event is used to notify an SPU program that either a processor or
another device has read from a full SPU Outbound Mailbox Register (see page 102) and that the SPU Write
Outbound Mailbox Channel (see page 139) can be written without stalling the SPU.

The event occurs when the channel count for the SPU Write Outbound Mailbox Channel (see page 139)
changes from a 0 (full) to a nonzero (not full) value. When this event occurs, it sets Pend_Event[Le] to ‘1’. If
the event is enabled (that is, SPU_RdEventMask[Le] is set to ‘1’), the count for the SPU Read Event Status
Channel is set to 1 and SPU_RdEventStat[Le] is set to ‘1’.

The Pend_Event[Le] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel (see page 161) with the Le bit set to ‘1’ (that is, SPU_WrEventAck[Le] is set to ‘1’). It is also set
to ‘0’ when privileged software updates the SPU Pending Event Register using the SPU channel access
facility with the corresponding bit set to ‘0’.

The following procedure handles the SPU outbound mailbox available event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[Le] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[Le] set to ‘1’.1

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the SPU Write Out-
bound Mailbox Channel.

5. If the channel count is 0, skip to step 7.

6. Write a new mailbox data entry by issuing a write channel (wrch) instruction to the SPU Write Outbound
Mailbox Channel.

7. Exit the SPU Outbound Mailbox handler.

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Synergistic Processor Unit Channels

Page 168 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
8. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[Le] set to ‘1’.1

9. Exit the general event handler.1

9.12.8 SPU Signal Notification 2 Available Event

The SPU signal notification 2 available event is used to notify an SPU program that another processor or
device has written to an empty SPU Signal Notification 2 Register and that the SPU Signal Notification 2
Channel can be read without stalling the SPU. See Section 9.6 SPU Signalling Channels beginning on page
142 for more information.

The event occurs when the channel count for the SPU Signal Notification 2 Channel changes from 0 (empty)
to 1 (valid) value. When this event occurs, it sets Pend_Event[S2] to ‘1’. If the event is enabled (that is,
SPU_RdEventMask[S2] is set to ‘1’), the count for the SPU Read Event Status Channel is set to 1 and
SPU_RdEventStat[S2] is set to ‘1’.

The Pend_Event[S2] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the S2 bit set (that is, SPU_WrEventAck[S2] is set to ‘1’). It is also set to ‘0’ when privi-
leged software updates the SPU Pending Event Register using the SPU channel access facility with the
corresponding bit set to ‘0’.

The following procedure handles the SPU signal notification 2 available event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[S2] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[S2] set to a ‘1’.1

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the SPU Signal Notifica-
tion 2 Channel (see page 144).

5. If the channel count is 0, skip to step 7.

6. Read the signal data by issuing a read (rdch) channel instruction to the SPU Signal Notification 2 Chan-
nel.

7. Exit the SPU Signal Notification 2 handler.

8. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[S2] set to ‘1’.1

9. Exit the general event handler.1

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 169 of 358

User Mode Environment

Cell Broadband Engine Architecture
9.12.9 SPU Signal Notification 1 Available Event

The SPU signal notification 1 available event is used to notify an SPU program that another processor or
device has written to an empty SPU Signal Notification 1 Register and that the SPU Signal Notification 1
Channel (see page 143) can be read without stalling the SPU. See Section 9.6 SPU Signalling Channels
beginning on page 142 for more information.

The event occurs when the channel count for the SPU Signal Notification 1 Channel changes from a 0
(empty) to a 1 (valid) value. When this event occurs, it sets Pend_Event[S1] to ‘1’. If the event is enabled (that
is, SPU_RdEventMask[S1] is set to ‘1’), the count for the SPU Read Event Status Channel is set to 1 and
SPU_RdEventStat[S1] is set to ‘1’.

The Pend_Event[S1] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the S1 bit set (that is, SPU_WrEventAck[S1] is set to ‘1’). It is also set to ‘0’ when privi-
leged software updates the SPU Pending Event Register using the SPU channel access facility with the
corresponding bit set to ‘0’.

The following procedure handles the SPU signal notification 1 available event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[S1] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[S1] set to ‘1’.1

4. Obtain the channel count by issuing a read channel count (rchcnt) instruction to the SPU Signal Notifica-
tion 1 Channel (see page 143).

5. If the channel count is 0, skip to step 7.

6. Read the signal data by issuing a read channel (rdch) instruction to the SPU Signal Notification 1 Chan-
nel (SPU_RdSigNotify1).

7. Exit the SPU Signal Notification 1 handler.

8. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[S1] set to ‘1’.1

9. Exit the general event handler.1

9.12.10 Lock Line Reservation Lost Event

The lock line reservation lost event is used to notify an SPU program of a bus action that resulted in the loss
of the reservation on an aligned unit of real storage, a reservation granule. An SPU program acquires a reser-
vation by issuing a getllar command. The reservation is lost when another processor or device modifies one
or more bytes in the reservation granule. The reservation can also be lost if privileged software writes the
Flush bit in the MFC Atomic Flush register (MFC_Atomic_Flush[F] is set to ‘1’). See Section 7.8.1 Get Lock
Line and Reserve Command beginning on page 70 for more information.

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Synergistic Processor Unit Channels

Page 170 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
The event occurs when the reservation is lost. When this event occurs, it sets Pend_Event[Lr] to ‘1’. If the
event is enabled (that is, SPU_RdEventMask[Lr] is set to ‘1’), the count for the SPU Read Event Status
Channel is set to 1, and SPU_RdEventStat[Lr] is set to ‘1’.

The Pend_Event[Lr] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the Lr bit set (that is, SPU_WrEventAck[Lr] is set to ‘1’). It is also set to ‘0’ when privileged
software updates the SPU Pending Event Register using the SPU channel access facility with the corre-
sponding bit set to ‘0’.

Programming Note:

A getllar command creates a reservation on a unit of real storage called the reservation granule. The reser-
vation is lost when another processor or device modifies any bytes in the reservation granule. When the
reservation is lost, a lock line reservation lost event is presented to the SPU. While waiting for the event to be
presented, the SPU can stall.

Some operating systems or hypervisors perform operations such as page stealing, page swapping, and copy
on write that change the effective-address-to-real-address mapping. If one of these operations occurs after
an SPU acquires a reservation, an update performed by another processor or device might modify a different
reservation granule. Thus, the reservation held by the SPU is not lost, and the expected lock line reservation
lost event is not presented. Not all operating systems and hypervisors are implemented in a manner that can
cause this condition. Contact your system provider to determine if you need to plan for this possibility.

When using the lock line reservation lost event, software should avoid this condition or any condition that
might prevent an expected event from being presented to an SPU. Software should also be designed to
handle this situation if it does occur. To break out of an indefinite wait, the software design should include
some form of a watchdog timer (contact your system provider about the preferred form of the watchdog
timer). Software should reissue the getllar command if the expected lock line reservation lost event does not
occur within the time period specified in the watchdog timer.

The following procedure handles the lock line reservation lost event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[Lr] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[Lr] set to ‘1’.1

4. Perform the application-specific function in response to system modification of data in the lock-line area.

This is typically started by checking a software structure in memory to determine if a lock line is still being
monitored. If it is still being “waited on,” then the next step would typically consist of issuing a getllar com-
mand to the same lock line area that was modified to obtain the new data and then acting on that data.

5. Exit the lock line reservation lost event handler.

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 171 of 358

User Mode Environment

Cell Broadband Engine Architecture
6. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[Lr] set to ‘1’.1

7. Exit the general event handler.1

9.12.11 Privileged Attention Event

The privileged attention event is used to notify an SPU program that privileged software is requesting atten-
tion from an SPU program. Privileged software requests attention by writing ‘1’ to the Attention Event Request
bit in the SPU Privileged Control Register (see page 239) (that is, SPU_PrivCntl[A] is set to ‘1’).

The event occurs when SPU_PrivCntl[A] is set to ‘1’. When this event occurs, it sets Pend_Event[A] to ‘1’. If
the event is enabled (that is, SPU_RdEventMask[A] is set to ‘1’), the count for the SPU Read Event Status
Channel is set to 1 and SPU_RdEventStat[A] is set to ‘1’.

The Pend_Event[A] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the A bit set (that is, SPU_WrEventAck[A] is set to ‘1’). It is also set to ‘0’ when privileged
software updates the SPU Pending Event Register using the SPU channel access facility with the corre-
sponding bit set to ‘0’.

The following procedure handles the privileged attention event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[A] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[A] set to ‘1’.1

4. Perform the application-specific function in response to a privileged attention event.

This signals that a yield of the SPU is being requested or some other action. An application or operating
system-specific response to the privileged attention event should be issued, such as stop and signal,
SPU Inbound Mailbox write, SPU Outbound Interrupt Mailbox write, or an update of a status in system or
I/O memory space.

5. Exit the privileged attention event handler.

6. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[A] set to ‘1’.1

7. Exit the general event handler.1

9.12.12 Multisource Synchronization Event

A multisource synchronization event is used to notify an SPU program that a multisource synchronization
request has completed. Multisource synchronization is requested by writing to the MFC Write Multisource
Synchronization Request Channel (see page 149). Data written to this channel is ignored. However, since all
the bits are reserved, software should write a value of 0 for compatibility with future enhancements.

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Synergistic Processor Unit Channels

Page 172 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
The event occurs when the channel count for the MFC Write Multisource Synchronization Request Channel
changes from 0 to 1. When this event occurs, it sets Pend_Event[Ms] to ‘1’. If the event is enabled (that is,
SPU_RdEventMask[Ms] is set to ‘1’), the count for the SPU Read Event Status Channel is set to 1 and
SPU_RdEventStat[Ms] is set to ‘1’.

The Pend_Event[Ms] bit is set to ‘0’ when a write channel (wrch) targets the SPU Write Event Acknowledg-
ment Channel with the Ms bit set (that is, SPU_WrEventAck[Ms] is set to ‘1’). It is also set to ‘0’ when privi-
leged software updates the SPU Pending Event Register using the SPU channel access facility with the
corresponding bit set to ‘0’.

The multisource synchronization event must be cleared before issuing the multisource synchronization
request.

The following procedure handles the multisource synchronization event:

1. Issue a read channel (rdch) instruction to the SPU Read Event Mask Channel and save the data in the
“mask”.1

2. Mask the event by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel with
SPU_WrEventMask[Ms] set to ‘0’.1

3. Acknowledge the event by issuing a write channel (wrch) instruction to the SPU Write Event Acknowl-
edgment Channel with SPU_WrEventAck[Ms] set to ‘1’.1

4. Perform the application-specific function in response to the completion of a pending multisource synchro-
nization operation. This would typically indicate that the data in a particular buffer has been completely
updated, or that a buffer area is no longer in use.

5. Exit the multisource synchronization event handler.

6. Restore the “mask” by issuing a write channel (wrch) instruction to the SPU Write Event Mask Channel
with SPU_WrEventMask[Ms] set to ‘1’.1

7. Exit the general event handler.1

1. When multiple events are enabled, a common handler should be used to save the current event mask, mask all events that
are to be handled in one channel write, and acknowledge all events that are to be handled in a single channel write. Then
each event-specific handler should be invoked to handle the event. The common handler should then restore the current
event mask from the saved value and exit. This technique minimizes the generation of spurious events.
Version 1.02
October 11, 2007

Synergistic Processor Unit Channels

Page 173 of 358

User Mode Environment

Cell Broadband Engine Architecture
Synergistic Processor Unit Channels

Page 174 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
10. Storage Access Ordering

As shown in Figure 10-1 on page 176, there are multiple storage domains in the Cell Broadband Engine
Architecture (CBEA). The PowerPC Architecture, Book II defines storage access ordering and synchroniza-
tion facilities for the main storage domain. The Synergistic Processor Unit Instruction Set Architecture docu-
ment defines storage access ordering and synchronization facilities for the local storage domain and channel
domain.

In a CBEA-compliant processor, there can be multiple local storage and channel domains but only one main
storage domain. The ordering of accesses between these different domains is described in the following
sections. This description assumes that the local storage is accessed from the main storage domain with the
storage attribute of caching inhibited. The CBEA also defines direct memory access (DMA) facilities in the
memory flow controller (MFC) for initiating storage accesses in both domains and additional synchronization
facilities for main storage beyond those described in the PowerPC Architecture, Book II. For more informa-
tion, also see Section 6 Memory Flow Controller beginning on page 51, Section 7 MFC Commands beginning
on page 55, Section 8 Problem-State Memory-Mapped Registers beginning on page 79, and Section 9
Synergistic Processor Unit Channels beginning on page 113.

A synergistic processor unit (SPU) initiates accesses within the local storage and channel domains. A Power
Processor Element (PPE) initiates accesses within the main storage domain. The MFC can initiate accesses
in both the main storage and local storage domains. Local storage can have an alias in the main storage.
Therefore, it is shown both in the local storage domain and in the main storage domain. Access to local
storage using the alias adheres to the ordering rules for the main storage domain.

Examples of the access ordering are given in Appendix F Examples of Access Ordering beginning on
page 321.

As shown in Figure 10-1 on page 176, the MFC maintains separate command queues for MFC SPU
commands and MFC proxy commands. MFC synchronization commands that are placed in the MFC proxy
queue only order the MFC commands within the MFC proxy command queue. MFC synchronization
commands issued by the SPU only order MFC commands within the MFC SPU command queue.

When an MFC synchronization command finishes processing, both the local storage access and the main
storage access are performed. Therefore, subsequent accesses are ordered whether they are initiated by the
SPU directly by loads or stores to local storage or are initiated indirectly by channel commands.

When the status returned by a read channel instruction that targets the MFC Read Tag-Group Status
Channel (see page 133) indicates that a put command is complete, the local storage accesses are complete.
The accesses are ordered with respect to the SPU. However, the main storage accesses might not be
complete. The accesses are not ordered with respect to other processors and devices. For a get command,
both the local storage and main storage accesses are complete and ordered with respect to other processors
and devices.
Version 1.02
October 11, 2007

Storage Access Ordering

Page 175 of 358

User Mode Environment

Cell Broadband Engine Architecture
The putqlluc MFC atomic command is placed into the MFC SPU command queue along with other
commands. Because this command is queued, it executes independent of any pending immediate getllar,
putllc, and putlluc MFC atomic update commands.

The putqlluc command creates a tag-specific fence even though there is no <f> modifier. Therefore, it uses
the MFC tag parameter. To determine when the putqlluc command is complete, software must wait for tag-
group completion. When completed, all accesses from earlier-issued commands with the same tag ID in the
MFC SPU command queue and the accesses for the putqlluc command are completed. Due to the tag-
specific fence created by the putqlluc command, the local storage and main storage accesses performed by
the putqlluc are ordered with respect to all earlier-issued commands with the same tag (tag group) in the
MFC SPU command queue.

Figure 10-1. Storage Domains in a CBEA-Compliant Processor

Atomic
Updates

SPU

Local Storage

MFC

SL1 L2 Cache

L1 Cache

PPU

Element Interconnect Bus (EIB)

Channel Interface

Local Storage Domain Main Storage Domain

MMIO
Registers

MFC SPUQ: Memory flow controller synergistic processor unit command queue

MFC
SPUQ

MFC

Channel Domain

Main

Storage

PrxyQ

MFC PrxyQ: Memory flow controller proxy command queue
MMIO Registers: Memory-mapped input-output registers

MFC: Memory flow controller

SPU: Synergistic processor unit
SL1: First-level cache for DMA transfers between local storage and system memory
PPU: PowerPC processor unit
Storage Access Ordering

Page 176 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
10.1 Order of Command Execution

Both PowerPC Architecture, Book II and the Synergistic Processor Unit Instruction Set Architecture docu-
ment have a sequential execution model. In this model, from a software viewpoint, instructions appear to be
executed in the order specified by the program, or program order. However, the order in which storage
accesses are performed can be different from the program order.

The following terms are used in the description of storage access ordering:

10.2 Main Storage Domain Access Ordering

The storage model for the CBEA is weakly consistent. This model incorporates the same weakly consistent
model that the PowerPC Architecture supports for a PPE. This model provides an opportunity for improved
performance over a model that has stronger consistency rules. However, it places the responsibility on the
programmer or programming tools to ensure that ordering or synchronization instructions, commands, or
command modifiers are properly placed when the storage is shared by multiple units in the CBEA. PowerPC
Architecture, Book II defines PPE storage access ordering and instructions. For DMA operations initiated by
the memory flow controllers found in the Synergistic Processor Elements (SPEs), the storage ordering
command modifiers, fence and barrier, are provided as are the synchronization commands mfcsync,
mfceieio, and barrier. For more information about these facilities, see Section 7.9 MFC Synchronization
Commands beginning on page 73.

The following rules apply to main storage access order in the main storage domain.

• If two PowerPC processor unit (PPU) store instructions specify storage locations that are both caching
inhibited and guarded, the corresponding storage accesses are performed in program order with respect
to the main storage accesses of any PPEs, SPEs, or devices.

• All accesses resulting from a single MFC put command specifying storage that is both caching inhibited
and guarded are performed in sequential (increasing) address order in the main storage domain.

• All accesses resulting from a single put list command specifying storage that is both caching inhibited
and guarded are performed in sequential (increasing) address order for each list element and in list order
between elements with respect to the main storage accesses of any PPEs, SPEs, or devices.

Term Definition

Main storage The effective-address space. It consists physically of real memory (whatever is
external to the memory-interface controller), SPU LSs, memory-mapped regis-
ters and arrays, memory-mapped I/O devices, and pages of virtual memory that
reside on disk. It does not include caches or execution-unit register files.

MFC effective address
access

Accesses to main storage using the effective address in the main storage
domain.

MFC LSA access Accesses to local storage using the local storage address (LSA) in the local
storage domain.

MFC put commands The collection of all MFC commands that transfer data from local storage to the
main storage domain. See Section 7.6 Put Commands (Local Storage to Main
Storage) beginning on page 65.

MFC get commands The collection of all MFC commands that transfer data from the main storage
domain to local storage. See Section 7.5 Get Commands (Main Storage to
Local Storage) beginning on page 64.
Version 1.02
October 11, 2007

Storage Access Ordering

Page 177 of 358

User Mode Environment

Cell Broadband Engine Architecture
• A PPU load instruction might depend on the value returned by a preceding load instruction because the
value is used to compute the effective address specified by the second load. In that case, the corre-
sponding storage accesses are performed in program order with respect to any PPEs, SPEs, or devices
to the extent required by the associated memory-coherence-required attributes.1 This applies even if the
dependency has no effect on program logic (for example, the value returned by the first load is ANDed
with zero and then added to the effective address specified by the second load).

• An MFC atomic command might be followed by a read channel (rdch) from the MFC Read Atomic Com-
mand Status Channel that returns a status indicating completion of the command. In this case, the MFC
atomic update access to main storage is performed before any main storage accesses specified by an
MFC command that was issued later by the SPU through the channel interface.

• When an MFC command queue process is suspended by a PPE memory-mapped I/O (MMIO) operation,
all earlier main storage accesses are performed with respect to the PPE that caused the suspension
before any later MFC main storage accesses are performed when the MFC command queue process is
no longer suspended. The MFC multisource synchronization facility (see page 108) defines a facility that
can be used when it is necessary to ensure that all earlier MFC main storage accesses are performed
with respect to any and all PPU and MFC main storage accesses.

• When the PPU executes a sync or eieio instruction, a memory barrier is created that orders applicable
storage accesses. When an MFC issues an mfcsync or mfceieio command, a memory barrier is created
that orders applicable main storage accesses in pairs as described below.

For example, let A be a set of main storage accesses that includes all main storage accesses associated
with instructions or applicable MFC commands preceding the barrier-creating instruction or command.
Let B be a set of main storage accesses that includes all main storage accesses associated with instruc-
tions or applicable MFC commands following the barrier-creating instruction or command. For each appli-
cable pair ai,bj of main storage accesses such that ai is in A and bj is in B, the memory barrier ensures
that ai will be performed with respect to any PPEs, SPEs, or devices to the extent required by the associ-
ated memory-coherence-required attributes,1 before bj is performed with respect to that PPE, SPE, or
device.

The memory barrier orders main storage accesses performed by one unit. Some memory barriers have
an additional cumulative property, which orders certain main storage accesses done by other units.

For example, let P1 represent the initiator of main storage accesses and a memory barrier. The ordering
done by the memory barrier is said to be “cumulative,” if it also orders main storage accesses that are
performed by a PPE, or an SPE, or a device other than P1, as follows:

• A includes all applicable main storage accesses by any PPE, SPE, or other device that were per-
formed with respect to P1 before the memory barrier was created.

• B includes all applicable storage accesses by any such PPE, SPE, or device that are performed after
a load instruction or get command executed by that PPE, SPE, or device has returned the value
stored by a store instruction or put command that is performed after the barrier-creating instruction or
command (that is, a store instruction or put command that is in B).

Note: The recursion in the definition of B is intentional. Initially B contains the storage accesses per-
formed by P1 after the memory barrier. Repetitively applying the definition for B, the set of storage
accesses in B increases with each repetition.

1. The phrase “to the extent required by the associated memory-coherence-required attributes” refers to the memory-coher-
ence-required attribute, if any, associated with each main storage access. This phrase does not apply to storage accesses
in the local storage domain.
Storage Access Ordering

Page 178 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
For storage accesses to storage that does not have the caching inhibited and guarded attribute, no order-
ing should be assumed for storage accesses caused by a single instruction (that is, by an instruction for
which the access is not atomic) or by a single MFC command (that is, by an MFC command for which the
access is not atomic). No means are provided for controlling the order.

10.3 Local Storage Domain Access Ordering

The following rules apply to local storage access order in the local storage domain. The access order for SPU
channel reads and writes is also described. The MFC DMA commands perform a local storage access using
the local storage address (LSA) parameter, which is called an MFC LSA access.

• When an SPU executes either a sync or a dsync instruction, a memory barrier is created that arranges
the SPU instructions in the following order:

– Earlier load instructions
– Earlier store instructions
– Earlier channel read instructions that are issued before later-issued channel read instructions
– Channel write instructions
– Later load instructions
– Later store instructions

• The MFC mfcsync and mfceieio commands order all earlier-issued commands in the same queue and
with the same tag relative to all later-issued commands in the same command queue with the same tag
because they create a tag-specific barrier even though there is no modifier. MFC LSA accesses for
all earlier-issued commands are performed before MFC LSA accesses for any later-issued commands;
that is, those following the mfcsync and mfceieio commands.

• An MFC barrier command orders all earlier-issued commands in the same queue relative to all later-
issued commands in the same queue. MFC LSA accesses for all earlier-issued commands are per-
formed before MFC LSA accesses for any later-issued commands; that is, those following the MFC bar-
rier command.

• An MFC put or get command with a tag-specific fence orders all earlier-issued commands with the same
tag and in the same queue relative to this command. MFC LSA accesses for all earlier-issued commands
in the same queue and with the same tag are performed before any MFC LSA accesses for an MFC put
or get command with a tag-specific fence.

• An MFC put or get command with a tag-specific barrier orders all earlier-issued commands in the same
queue relative to all later-issued commands with the same tag and in the same queue. MFC LSA
accesses for all earlier-issued commands in the same queue and with the same tag are performed before
any MFC LSA accesses for later-issued commands with the same tag, including the command with the
tag-specific barrier.

• The MFC LSA access is complete for a queued put or get command when a channel read instruction
that targets the MFC Read Tag-Group Status Channel (see page 133) returns a status that indicates the
tag group associated with the put or get command is complete.

• An immediate MFC atomic command that is followed by a read from the MFC Read Atomic Command
Status Channel (see page 137) returns status indicating completion of the command. In this case, the
MFC atomic update access involving local storage is completed before any later-issued SPU load or
store instruction.

• All earlier MFC LSA accesses are performed when the MFC command queue process is suspended by a
PPE MMIO operation before any later MFC LSA accesses are performed once the MFC command queue
process is resumed.
Version 1.02
October 11, 2007

Storage Access Ordering

Page 179 of 358

User Mode Environment

Cell Broadband Engine Architecture
10.4 Cross-Domain Storage Access Order

Cross-domain storage access order specifies that the results of a strongly ordered access sequence in the
main storage domain targeting a single SPE will be seen in the same relative order when accessed by an
SPU with a strongly ordered sequence in the local storage domain of that SPE. It also specifies that the
results of a strongly ordered access sequence in the local storage domain of a specific SPE will be seen in
the same relative order in the main storage domain access directed at that SPE. The SPU Inbound Mailbox
Register (see page 103), the SPU Signal Notification 1 Register (see page 106), and the SPU Signal Notifica-
tion 2 Register (see page 107) are the only MMIO registers for which cross-domain storage access order
applies.

Cross-domain storage access order is critical when a main storage domain update of SPE local storage is
performed and an SPE is informed using an SPE communication MMIO register.

For examples of how to use the cross-domain storage access order, see examples 15 through 18 in
Appendix F on page 321.

10.5 Cumulative Access Ordering

The MFC Multisource Synchronization Register (see page 109) defines a facility to achieve cumulative
ordering across the local storage and main storage domains.

10.6 MFC Overlapped Accesses

An MFC access to an effective address range that maps to its own local storage (the local storage alias) can
produce unpredictable results when the translated effective address area overlaps the local storage area.
(For more information, see Section 3.2.1.2 Local Storage Access Exceptions on page 42.)

When valid results occur, the access specified by the local storage address (LSA) is still considered to be
performed in the local storage domain. The local storage access specified by the effective address is still
considered to be performed in the main storage domain. Ordering rules for each domain still apply.

10.7 Atomic Accesses

An access is single-copy atomic, or just atomic, if it is always performed in its entirety with no visible fragmen-
tation. Atomic accesses are therefore serialized; each happens in its entirety in some order, even when that
order is not specified in the program, or enforced between processors. All SPU loads and stores to local
storage are atomic.

Single-copy atomicity (see page 42) describes atomicity in the main storage domain. All MFC and PPU
accesses to local storage, which are defined as atomic in single-copy atomicity, are also defined as atomic in
the local storage domain. Therefore, SPU, MFC, and PPU atomic accesses to local storage are performed in
their entirety. No fragmentation of these accesses is observed by any other SPU, MFC, or PPU.
Storage Access Ordering

Page 180 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
10.8 Store Combining

If two PowerPC store instructions specify storage locations that are both caching inhibited and not guarded,
such stores can be combined into one access by a CBEA-compliant processor. If the two store instructions
were each single-copy atomic and were combined by a CBEA-compliant processor, the combined store is not
required to be single-copy atomic. However, the original single-copy atomicity of the original stores must be
preserved. If a sync or eieio instruction separates the store instructions, combining cannot occur.

10.9 Storage Ordering of I/O Accesses

A coherence domain consists of all processors, MFCs, and devices with access to main storage and all inter-
faces to main storage. Mechanisms outside the coherence domain can initiate memory reads and writes. The
PowerPC Architecture requires these accesses to be performed within the coherence domain in the order in
which they enter the coherence domain. They must also be performed as coherent accesses. This is called a
strongly ordered I/O access.

The CBEA requires an implementation to support strongly ordered I/O accesses to be compatible with the
PowerPC Architecture. The CBEA also allows an implementation to support a weakly ordered I/O mode. A
weakly ordered mode can provide for better efficiency of I/O accesses in certain cases. However, if the
weakly ordered mode is provided, the implementation must also provide software with a means of ordering
storage accesses when strong ordering is required.
Version 1.02
October 11, 2007

Storage Access Ordering

Page 181 of 358

User Mode Environment

Cell Broadband Engine Architecture
Storage Access Ordering

Page 182 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
11. SPU Isolation Facility

The Cell Broadband Engine Architecture (CBEA) includes an optional facility that enables privileged software
and applications to isolate and load a code image into one or more of the synergistic processor units (SPUs).
The SPU isolation facility ensures that the code image loaded into the associated local storage has not been
altered by any means.

This section describes only those aspects of the isolation facility that relate to the CBEA. Many details are
implementation dependent. For more specific implementation information, contact the system or processor
manufacturer.

The SPU isolation facility consists of bits within the registers and channels mentioned in this section and
includes:

• SPU Run Control Register (see page 96)
• SPU Status Register (see page 97)
• SPU Read Machine Status Channel (see page 147)
• SPU Privileged Control Register (see page 239)

11.1 SPU Isolation Facility Features

The SPU isolation facility consists of six principal architectural features:

• An SPU isolated execution environment, independent for each SPU in a CBEA-compliant processor.

• An exit function and a load function for moving between the SPU nonisolated execution environment and
the SPU isolated execution environment

• An authentication and decryption master key

• A validation procedure for ensuring that the code image loaded when entering the SPU isolated execu-
tion environment has not been altered by any means

• Support for random number generation

• A persistent storage that retains its state between isolation sessions

The SPU isolated execution environment allows an application loaded into an isolated area of local storage to
execute without being modified, observed, or compromised by any ordinary means external to that SPU. (The
isolated area is discussed in the next paragraph.) In this environment, the SPU Next Program Counter does
not control where the SPU starts executing instructions. The initial instruction executed when entering the
SPU isolated execution environment is implementation dependent.

When initiating a transition into an SPU isolated execution environment and while operating in this environ-
ment, an area of local storage starting at address zero is isolated from the system (this area is called the
isolated local storage area or the isolated area). Only the associated SPU can access the isolated area.
Access from all other processors and devices in the system must not be allowed. The size of the isolated
local storage area is implementation dependent. The remaining area, or open area, of local storage is not
isolated and remains accessible. The open area can be used for data transfers, control, and communications
between the rest of the system and the SPU operating in the SPU isolated execution environment. In addi-
tion, internal and external accesses to all debug, test, performance monitoring, and diagnostic interfaces for
the associated SPU must be disabled.
Version 1.02
October 11, 2007

SPU Isolation Facility

Page 183 of 358

User Mode Environment

Cell Broadband Engine Architecture
The SPU isolation facility provides two transition functions, exit and load, to change the SPU between the two
code execution environments: nonisolated and isolated. An exit function must be initiated to change an SPU
from an SPU isolated execution environment to an SPU nonisolated execution environment. The exit function
erases all SPU states before exiting from the SPU isolated execution environment. A load function must be
initiated to change an SPU from an SPU nonisolated execution environment to an SPU isolated execution
environment. The load function loads a code image into the local storage and begins executing the image in
the SPU isolated execution environment. A CBEA-compliant processor can implement just the exit function,
or both the exit and load functions. The load function cannot be implemented without an exit function.

The SPU isolation facility requires a CBEA-compliant processor with nonvolatile storage for holding an
authentication and decryption master key. The size of the nonvolatile storage is implementation dependent.
The nonvolatile storage must not be accessible by any software, processor, or device in the system. The
authentication and decryption master key is intended for exclusive use of the validation procedure.

As part of the load function, a validation procedure is performed when entering the SPU isolated execution
environment. This procedure must ensure that no changes have been made to the code image by altering the
external source image that supplies the code, by interfering with the loading operation, or by any other
means. The validation procedure should use the authentication and decryption master key as part of the vali-
dation process. The validation procedure is implementation dependent. For more information, contact the
system or processor manufacturer.

The SPU isolation facility also requires support for a random number generation (RNG) function. The details
of the RNG function are implementation dependent. An implementation can either allow access to the RNG
function in any operating environment or restrict access to it from any environment.

The exit function erases all information from the previous application. Therefore, the SPU isolation facility
requires a persistent storage that retains its value even after exiting the SPU isolated execution environment.
The persistent storage is not required to be nonvolatile. The persistent storage enables an application to
transfer data from one isolated session to another. Access to the persistent storage must only be allowed by
an SPU operating in the SPU isolated environment. After a successful load function, read and write access
should be allowed to the persistent storage. An implementation must provide a method for an SPU applica-
tion to change the access restrictions of the persistent storage after entering the SPU isolated execution envi-
ronment (for example, by removing the read and write accesses). Once the access restrictions are changed,
a new load function must be initiated to restore the read and write accesses. The size of the persistent
storage area and the method used to access the persistent storage are implementation dependent.

Note: The persistent storage is typically associated with a physical SPU. Therefore, software must provide a
method either to ensure that the physical SPU is not changed between two isolation sessions for a given
application, or to virtualize the persistent storage. Furthermore, all due caution should be taken by software
before loading any code not validated with the authentication and decryption master key to prevent malicious
tampering with the persistent storage.
SPU Isolation Facility

Page 184 of 358

 Version 1.02
October 11, 2007

User Mode Environment

 Cell Broadband Engine Architecture
11.2 SPU Operating States

Support for the SPU isolation facility is optional for a CBEA-compliant processor. In addition, an implementa-
tion can implement a subset of the SPU isolation facility features, specifically the exit function. An SPU that
implements the full isolation facility has seven states of operation compared to two states for an implementa-
tion that does not support the isolation facility. If only the exit function is implemented, there are three opera-
tional states. The following seven states are implemented with the optional SPU isolation facility:

• SPU Stopped—Stopped in a nonisolated state (all SPU implementations)
• SPU Run—Running in a nonisolated state (all SPU implementations)
• Exit—Performing an isolated exit function (SPU with full or exit isolation support)
• Load—Performing an isolated load function (SPU with full isolation support only)
• Load Failed—The load function failed (SPU with full isolation support only)
• SPU Isolated Run—SPU running in an isolated state (SPU with full isolation support only)
• SPU Isolated Stopped—SPU stopped in an isolated state (SPU with full isolation support only)

Figure 11-1 on page 186 illustrates the SPU states and the methods for transitioning between the states. The
three lightly shaded boxes represent the two SPU operating environments (isolated and nonisolated) and the
transition between these two environments. When the SPU is in any isolated or transition state, the SPU and
the isolated area of local storage cannot be accessed from any other processing or data transfer resource
within the system. This is shown as the darker shaded box in the figure.

Figure 11-1 also indicates how the setting of several bits in the SPU Status Register identifies the current
SPU state. An application can control the transition between states by writing the SPU Run Control Register
or an implementation-dependent facility that is only accessible to an SPU operating in the SPU isolated
execution environment. For simplicity, only the values written to the SPU Run Control Register that cause a
state transition are shown. All other values written to the SPU Run Control Register remain in their current
state.
Version 1.02
October 11, 2007

SPU Isolation Facility

Page 185 of 358

User Mode Environment

Cell Broadband Engine Architecture
Figure 11-1. SPU State Transitions

SPU Stopped

[0,0,0,0]

SPU Run

[0,0,0,1]

Exit

[1,0,1,1]

Load Failed

[0,1,1,0]

Load

[0,1,1,1]

SPU_RunCntl[Run]=‘00’

SPU_RunCntl[Run]=‘01’

or
Other Conditions

SPU Isolated

[0,0,1,0]
Stopped

SPU Isolated

[0,0,1,1]
Run

SPU_RunCntl[Run]=‘00’
SPU_RunCntl[Run]=‘01’

or
Other Conditions

SPU_RunCntl[Run]=‘10’

Stop and Signal (RC=‘0’)

SPU_RunCntl[Run]=‘11’
and

SPU_PrivCntl[Le]=‘1’

SPU_RunCntl[Run]=‘10’

SPU Nonisolated

SPU Isolated
Execution Environment

Execution Environment

Transition States

SPU_RunCntl[Run]=‘10’

Load Failed
Stop and Signal Load

Success

SPU and Local Storage Isolated from System

Implementation-
Dependent

SPU_RunCntl[Run]=’11’
and

SPU_PrivCntl[Le]=‘1’

Implementation-
Dependent

Facility
and

SPU_PrivCntl[Le]=‘1’

(RC!=‘0’)

Facility

Notes:

• The numbers in brackets after the state names indicate how the following bits are set in SPU_Status: E (SPU isolation exit sta-
tus), L (SPU isolation load status), IS (SPU isolated state), and R (SPU run status).

• SPU_RdMachStat[IS] (isolation status) is set to the same value as SPU_Status[IS] (SPU isolated state).
SPU Isolation Facility

Page 186 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
Privileged Mode Environment
Section 12 through Section 23 describe the instructions and facilities that are provided by the Cell Broadband
Engine Architecture (CBEA) for operating environment software, such as an operating system or a hyper-
visor. The facilities in the rest of this document are only available to applications running in a privileged mode,
either privilege 1 mode or privilege 2 mode. Collectively, these facilities are called the privileged mode envi-
ronment.
Version 1.02
October 11, 2007

Privileged Mode Environment

Page 187 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
Privileged Mode Environment

Page 188 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
12. Overview

Each of the privileged facilities with their related registers is discussed in the following sections. Table 12-1
SPE Privilege 1 Memory Map on page 190, Table 12-2 SPE Privilege 2 Memory Map on page 193, and Table
12-3 PPE Privilege 1 Memory Map on page 195 list the privileged registers.

• Section 13 PowerPC Architecture, Book III Compatibility beginning on page 197
• Section 14 Storage Addressing beginning on page 199
• Section 14.4 Real-Mode Storage Control Facilities beginning on page 217
• Section 15 MFC Privileged Facilities beginning on page 221
• Section 16 SPU Privileged Facilities beginning on page 239
• Section 17 SPE Context Save and Restore beginning on page 247
• Section 18 PPE Address Range Facility beginning on page 249
• Section 19 Cache Replacement Management Facility beginning on page 255
• Section 20 Resource Allocation Management beginning on page 259
• Section 21 Interrupt Facilities beginning on page 261
• Section 22 Power Management beginning on page 285
• Section 23 Version Control beginning on page 287

12.1 Privileged Mode Facility Organization

The facilities described in the privileged mode environment are classified as either privilege 1 or
privilege 2. These designations relate to a suggested hierarchy of privileged access. The access hierarchy is
defined to support a 2-level operating environment. An example of such an operating environment is when
multiple operating systems run concurrently on top of a more privileged hypervisor. This type of operating
environment implements logical partitioning.

Privilege 1 registers are the most privileged. They are intended to be accessed by a hypervisor or by firmware
operating in hypervisor mode (HV = ‘1’ and PR = ‘0’), typically when supporting logical partitioning. (For infor-
mation about hypervisor mode, see PowerPC Architecture, Books I-III.) Privilege 2 registers are intended for
privileged operating system code running in the HV = ‘0’ and PR = ‘0’ mode. When a single-level operating
environment exists, firmware and the privileged operating system typically combine privilege 1 and privilege 2
resources into one privileged level.

The page table should be set up so that only privileged mode software can access the facilities in the privi-
leged mode environment. Problem-state software should never be allowed access to any facilities that are
defined in the privileged mode environment. Hardware does not check that an access to a privileged mode
facility is performed by a privileged mode process.
Version 1.02
October 11, 2007

Overview

Page 189 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
12.1.1 SPE Privilege 1 Facilities

Table 12-1 lists all CBEA-compliant Synergistic Processor Element (SPE) registers that are designated for
privilege 1 access. For information about each of the registers, see the relevant page.

Table 12-1. SPE Privilege 1 Memory Map (Page 1 of 3)

Offset
(Hexadecimal) Register Description Access Type

Control and Configuration Area

x‘0000’ MFC_SR1 MFC State Register One (see page 221) Read/Write

x‘0008’ MFC_LPID MFC Logical Partition ID Register (see page 223) Read/Write

x‘0010’ SPU_ID SPU Identification Register (see page 291) Read/Write

x‘0018’ MFC_VR MFC Version Register (see page 290) Read Only

x‘0020’ SPU_VR SPU Version Register (see page 289) Read Only

x‘0028’:x‘00FF’ Reserved Reserved

Interrupt Area

x‘0100’ INT_Mask_class0 Class 0 Interrupt Mask Register (see page 276) Read/Write

x‘0108’ INT_Mask_class1 Class 1 Interrupt Mask Register (see page 277) Read/Write

x‘0110’ INT_Mask_class2 Class 2 Interrupt Mask Register (see page 278) Read/Write

x‘0118’:x‘013F’ Reserved Reserved Reserved

x‘0140’ INT_Stat_class0 Class 0 Interrupt Status Register (see page 280) Read/Write

x‘0148’ INT_Stat_class1 Class 1 Interrupt Status Register (see page 281) Read/Write

x‘0150’ INT_Stat_class2 Class 2 Interrupt Status Register (see page 282) Read/Write

x‘0158’:x‘017F’ Reserved Reserved Reserved

x‘0180’ INT_Route Interrupt Routing Register (see page 283) Read/Write

x‘0188’:x‘01FF’ Reserved Reserved Reserved

Atomic Unit Control Area

x‘0200’ MFC_Atomic_Flush
MFC Atomic Flush Register (see page 236)
This is an implementation-dependent register.

Read/Write

x‘0208’:x‘03FF’ SPU_Cache_ImplRegs Synergistic processor unit (SPU) cache hardware implementation-
dependent registers. See the specific implementation documentation.

1. An implementation should support reading of these registers for diagnostic purposes.
Overview

Page 190 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
Translation Lookaside Buffer (TLB) Management Registers

x‘0400’ MFC_SDR
MFC Storage Description Register (see page 224)
Also see the PowerPC Architecture, Book III for a description of this
register.

Read/Write

x‘0408’:x‘04FF’ Reserved Reserved

x‘0500’ MFC_TLB_Index_Hint
TLB Index Hint Register (see page 209)
Index to the best TLB entry to update.

Read Only

x‘0508’ MFC_TLB_Index
TLB Index Register (see page 210)1

Index to the TLB entry to update with the TLB Real Page Number
Register and the TLB Virtual Page Number Register.

Write Only

x‘0510’ MFC_TLB_VPN
TLB Virtual Page Number Register (see page 211)
Access to the upper portion of the TLB entry.

Read/Write

x‘0518’ MFC_TLB_RPN
TLB Real Page Number Register (see page 212)
Access to the lower portion of the TLB entry.

Read/Write

x‘0520’:x‘053F’ Reserved Reserved

x‘0540’ MFC_TLB_Invalidate_
Entry

TLB Invalidate Entry Register (see page 214)1

Virtual page number of the TLB entry to invalidate.
Note: Not available for the PowerPC Processor Element (PPE).

Write Only

x‘0548’ MFC_TLB_Invalidate_
All

TLB Invalidate All Register (see page 216)1

Invalidate all TLB entries (optional).
Note: Not available for the PowerPC Processor Element (PPE).

Write Only

x'0550':'057F’ Reserved Reserved

Memory Management (Implementation-dependent area: See the specific implementation documentation.)

x‘0580’:x‘05FF’ SPE_MMU_ImplRegs
SPE Memory Management Unit (MMU) Registers
See the specific implementation documentation for a description of
these registers.

Memory Flow Controller (MFC) Status and Control Area

x‘0600’ MFC_ACCR MFC Address Compare Control Register (see page 227) Read/Write

x‘0610’ MFC_DSISR MFC Data Storage Interrupt Status Register (see page 226) Read/Write

x‘0620’ MFC_DAR MFC Data Address Register (see page 225) Read/Write

x‘0628’:x‘06FF’ Reserved Reserved

Replacement Management Table (RMT) Area (Implementation-dependent area. See the specific implementation documentation.)

x‘0700’ MFC_TLB_RMT_Index
RMT Index Register (see page 257)
Index of the replacement management tables.

Read/Write

x‘0710’ MFC_TLB_RMT_Data
RMT Data Register (see page 258)
Doubleword of RMT data pointed to by the RMT Index Register.
Entry contents are implementation dependent.

Read/Write

x‘0718’:x‘07FF’ SPE_RMT_ImplRegs SPE RMT hardware implementation-dependent registers

Table 12-1. SPE Privilege 1 Memory Map (Page 2 of 3)

Offset
(Hexadecimal) Register Description Access Type

1. An implementation should support reading of these registers for diagnostic purposes.
Version 1.02
October 11, 2007

Overview

Page 191 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
MFC Command Data Storage Interrupt Area

x‘0800’ MFC_DSIPR
MFC Data Storage Interrupt Pointer Register (see page 232)
Contains a pointer to the command in the MFC command queue that
caused the error condition.

Read Only

x‘0808’ MFC_LSACR MFC Local Storage Address Compare Register (see page 229)
64-bit MFC Local Storage Address Compare Register Read/Write

x‘0810’ MFC_LSCRR MFC Local Storage Compare Result Register (see page 230)
64-bit MFC Local Storage Compare Result Register Read Only

x‘0818’:x‘08FF’ Reserved Reserved

Real-Mode Support Registers

x‘0900’ MFC_RMAB MFC Real-Mode Address Boundary Register (see page 218) Read/Write

x‘0908’:x‘0BFF’ Reserved Reserved

MFC Command Error Area

x‘0C00’ MFC_CER
MFC Command Error Register (see page 231)
Contains a pointer to the command in the MFC command queue that
caused the error condition.

Read Only

x‘0C08’:x‘0FFF’ Reserved Reserved

Implementation-Dependent Area (See the specific implementation documentation for a detailed description of these registers)

x‘1000’:x‘1FFF’ PV1_ImplRegs Privilege 1 implementation-dependent registers

Table 12-1. SPE Privilege 1 Memory Map (Page 3 of 3)

Offset
(Hexadecimal) Register Description Access Type

1. An implementation should support reading of these registers for diagnostic purposes.
Overview

Page 192 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
12.1.2 SPE Privilege 2 Facilities

Table 12-2 lists all CBEA-compliant registers that are designated for privilege 2 access. For information about
each of the registers, see the relevant page.

Table 12-2. SPE Privilege 2 Memory Map (Page 1 of 2)

Offset
(Hexadecimal) Register Description Access Type

MFC Registers

x‘00000’:x‘010FF’ Reserved Reserved Reserved

Segment Lookaside Buffer Management Registers

x‘01100’ Reserved Reserved Reserved

x‘01108’ SLB_Index
SLB Index Register (see page 201)1

Index to the segment lookaside buffer (SLB) entry to be updated by
the SLB_VSID and SLB_ESID ports.

Write Only

x‘01110’ SLB_ESID
SLB Effective Segment ID Register (see page 202)
Access to the upper portion of an SLB entry.

Read/Write

x‘01118’ SLB_VSID
SLB Virtual Segment ID Register (see page 203)
Access to the lower portion of an SLB entry.

Read/Write

x‘01120’ SLB_Invalidate_Entry
SLB Invalidate Entry Register (see page 205)1

Effective segment ID (ESID) of the SLB entry to invalidate.
Write Only

x‘01128’ SLB_Invalidate_All
SLB Invalidate All Register (see page 206)1

Invalidate all SLB entries.
Write Only

x‘01130’:x‘01FFF’ Reserved Reserved Reserved

Context Save and Restore Area. (Implementation-dependent area: See the specific implementation documentation.)

x‘02000’:x‘02FFF’ MFC_CSR_ImplRegs MFC Context Save and Restore registers

MFC Control

x‘03000’ MFC_CNTL MFC Control Register (see page 233) Read/Write

x‘03008’:x‘03FFFF’ MFC_Cntl1_ImplRegs Implementation-dependent control registers. See the specific imple-
mentation documentation.

Interrupt Mailbox

x‘04000’ SPU_Out_Intr_Mbox
SPU Outbound Interrupt Mailbox Register (see page 237)
SPU writes; PPE reads.

Read Only

SPU Control

x‘04040’ SPU_PrivCntl SPU Privileged Control Register (see page 239) Read/Write

x‘04058’ SPU_LSLR SPU Local Storage Limit Register (see page 241) Read/Write

x‘04060’ SPU_ChnlIndex

SPU Channel Index Register (see page 242)
This register selects which SPU channel in the specified SPU(n) is
accessed using the SPU Channel Count Register or the SPU Channel
Data Register.

Read/Write

x‘04068’ SPU_ChnlCnt
SPU Channel Count Register (see page 244)
This register reads or initializes the SPU Channel Count Register
selected by the SPU Channel Index Register.

Read/Write

1. An implementation should support reading of these registers for diagnostic purposes.
Version 1.02
October 11, 2007

Overview

Page 193 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
x‘04070’ SPU_ChnlData
SPU Channel Data Register (see page 243)
This register reads or initializes the SPU channel data selected by the
SPU Channel Index Register.

Read/Write

x‘04078’ SPU_Cfg
SPU Configuration Register (see page 245)
This register is used to read or set the configuration of the SPU Sig-
nal-Notification Registers in the specified SPU(n).

Read/Write

x‘04080’:x‘04FFF’ Reserved Reserved

Implementation-Dependent Area. (See the specific implementation documentation for a detailed description of these registers).

x‘05000’:x‘0FFFF’ PV2_ImplRegs Privilege 2 implementation-dependent registers

Reserved Area

x‘10000’:x‘1FFFF’ Reserved Reserved

Table 12-2. SPE Privilege 2 Memory Map (Page 2 of 2)

Offset
(Hexadecimal) Register Description Access Type

1. An implementation should support reading of these registers for diagnostic purposes.
Overview

Page 194 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
12.1.3 PPE Privilege 1 Facilities

Table 12-3 lists all CBEA-compliant PPE registers that are designated for privilege 1 access. For information
about each of the registers, see the relevant page.

Table 12-3. PPE Privilege 1 Memory Map

Offset
(Hexadecimal) Register Description Access Type

Replacement-Management Table (RMT) Area (Implementation-dependent area: See the specific implementation documentation.)

x‘200’:x‘2FF’ Reserved Reserved

x‘300’ L2_RMT_Index
RMT Index Register (see page 257)
Index of the replacement-management tables.

Read/Write

x‘310’ L2_RMT_Data
RMT Data Register (see page 258)
Doubleword of RMT data pointed to by the RMT Index Register.
Entry contents are implementation dependent.

Read/Write

x‘318’:x‘7FF’ Reserved Reserved

Implementation-Dependent Area (See the specific implementation documentation for a detailed description of these registers.)

x‘800’:x‘FFF’ PPEPV_ImplRegs PPE privilege 1 implementation-dependent registers.
Version 1.02
October 11, 2007

Overview

Page 195 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
Overview

Page 196 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
13. PowerPC Architecture, Book III Compatibility

This section covers the compatibility of the PowerPC Processor Element (PPE) facilities used in a CBEA-
compliant system with the privileged facilities defined in PowerPC Architecture, Book III.

13.1 Optional Features in PowerPC Architecture, Book III (Required for CBEA)

The following facility is considered optional in the PowerPC Architecture, Book III but are required for compli-
ance with the Cell Broadband Engine Architecture (CBEA).

• Real-mode storage control (see Section 14.4 Real-Mode Storage Control Facilities on page 217 for more
information).

13.2 Incompatibilities with PowerPC Architecture, Book III

There are no incompatibilities with PowerPC Architecture, Book III.

13.3 Extensions to the PowerPC Architecture

See Appendix E Extensions to the PowerPC Architecture on page 315 for a description of the following
instructions and facilities that are not described in the PowerPC Architecture documents.

• Software Management of TLBs (optional) (see page 315)

• Mediated External Exception Extension (optional) (see page 316)

• Multiple Concurrent Large Pages (optional) (see page 318)

• Defined Behavior for Inaccessible SPRs (see page 319)
Version 1.02
October 11, 2007

PowerPC Architecture, Book III Compatibility

Page 197 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
PowerPC Architecture, Book III Compatibility

Page 198 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
14. Storage Addressing

The storage addressing of the Cell Broadband Engine Architecture (CBEA) is compatible with the PowerPC
Architecture. An address translation mechanism processes an effective address provided by an instruction or
a memory flow controller (MFC) command. The mechanism for a PowerPC Processor Element (PPE) is
described in PowerPC Architecture, Book III. The memory management unit (MMU) of the Synergistic
Processor Element (SPE) employs the same basic mechanism to process an effective address provided by
an MFC command. The PowerPC address translation mechanism has been extended to support multiple
concurrent large pages and the software management of translation lookaside buffers (TLBs) (see
Section E.3 Multiple Concurrent Large Pages (optional) on page 318).

If the Instruction Relocate (IR) and the Data Relocate (DR) bits in the PowerPC Machine State Register are
set to '1', address translations are enabled for instructions and data fetches by the PPEs. To enable transla-
tions of the effective addresses used in MFC commands, set the Relocate (R) bit of the MFC State Register
One (see page 221) to '1'.

Two steps are required to convert an effective address to a real address:

1. Convert the effective address to a virtual address. The conversion to a virtual address uses a seg-
ment lookaside buffer (SLB). The MMU for an SPE differs from the PowerPC Architecture only in the min-
imum number of SLB entries that must be provided by an implementation. The PowerPC Architecture
requires a minimum of 64 entries; an SPE MMU requires a minimum of eight SLB entries. The maximum
number of SLB entries is 4 K. All implementations must have at least a minimum number of SLB entries
and the associated management instructions, special purpose registers (SPRs), and memory-mapped
I/O (MMIO) registers.

2. Convert the virtual address to a real address. The conversion of a virtual address to a real address
uses a page table in main storage. The page table format and the conversion process are described in
PowerPC Architecture, Book III. In the software-managed mode, the TLB management instructions and
registers must provide the capability to directly specify a virtual-address-to-real-address translation with-
out using a hardware-accessed page table in main storage.

To enhance performance of these conversions, most implementations provide translation lookaside buffer
management (see Section 14.3 on page 207). The TLB is, basically, a special cache for keeping the recently
used page table entries (PTEs). When operating in hardware-accessed page table mode, the TLB need not
be kept consistent with the hardware-accessed page table in main storage. All implementations must support
both a virtual-to-real-address translation mechanism using a hardware-accessed page table in main storage
and a software-managed translation mechanism. The software-managed translation mechanism uses the
translation lookaside buffer management facilities to directly supply the translations without the need for a
hardware-accessed page table in main storage. (For more information, see Section 14.3 Translation Looka-
side Buffer Management beginning on page 207.)

Privileged software must manage the SLB in the CBEA for all PPE and SPE units that use address transla-
tion. The TLB is managed by hardware accesses to a page table in main storage in the PowerPC Architec-
ture. The CBEA provides both a hardware-managed TLB mode and a privileged software-managed TLB
mode. For both a PPE and an SPE, software management of the TLB allows the system software designer to
forgo the requirement of a hardware-accessible page table and use any format for the system page table.
The format and size of the page table are not restricted by hardware, as required by the PowerPC Architec-
ture. For more information about the hardware TLB management method, see PowerPC Architecture,
Book III.
Version 1.02
October 11, 2007

Storage Addressing

Page 199 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
In addition, the software management facility can be used in combination with the hardware TLB manage-
ment facility to preload translations into the TLB. For information about the TLB, see Section 14.3 Translation
Lookaside Buffer Management beginning on page 207.

14.1 PPE Segment Lookaside Buffer Management

PPE SLBs are software managed. To manage the PPE SLBs, the PowerPC Architecture supports five
instructions (slbie, slbia, slbmte, slbmfev, and slbmfee). See PowerPC Architecture, Book III for a descrip-
tion of these instructions.

14.2 SPE Segment Lookaside Buffer Management

The CBEA provides a set of MMIO registers to manage the SLBs in an SPE. These MMIO registers provide
the same functions for an SPE MMU as the PowerPC instructions provide for a PPE MMU. That is, the
following registers mimic the source operands of the PowerPC SLB management instructions (slbie, slbia,
slbmte, slbmfev, and slbmfee):

• SLB Invalidate Entry Register
• SLB Invalidate All Register
• SLB Index Register
• SLB Virtual Segment ID Register
• SLB Effective Segment ID Register

14.2.1 SLB Mapping

The SLB management registers for each SPE are mapped into the MMIO space of the main storage domain.
The SLB management area must be accessed with storage attributes of caching inhibited and guarded. It
should be restricted to privileged code. Software must perform the following sequence in order to replace an
SLB entry:

1. For each entry to be replaced:

a. Set the index of the SLB entry to be replaced.
b. Use the SLB Invalidate Entry Register (see page 205) to invalidate the SLB entry.

2. Set the new contents for the virtual segment ID (VSID) portion of the SLB entry.

3. Set the new contents for the effective segment ID (ESID) portion of the SLB entry along with the Valid bit.

The contents of an SLB entry in an SPE MMU are accessed by using the SLB Effective Segment ID Register
(see page 202) and the SLB Virtual Segment ID Register (see page 203). The SLB Index Register (see page
201) points to the SLB entry to be accessed by the SLB_ESID and SLB_VSID registers. The size and format
of the SLB are implementation dependent.
Storage Addressing

Page 200 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
14.2.2 SLB Index Register (SLB_Index)

The SLB Index Register is used to select which SLB entry to access using the SLB_ESID and SLB_VSID
registers. The SLB index is a 12-bit value. The number of index bits used and the organization of the SLB are
implementation dependent. Some implementations can require software to use a specific set of indexes for a
given SLB value. See the specific implementation documentation for more information.

This register can be written using a single 64-bit store operation or a single 32-bit store operation to the lower
32-bits of this register (that is, offset x‘0110C’).

Access Type Write

Base Address Offset (BP_Base | P2(n)) + x‘01108’, where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Index

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:51 Reserved Set to zeros.

52:63 Index Index. The number of bits in this field is implementation dependent.
Version 1.02
October 11, 2007

Storage Addressing

Page 201 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
14.2.3 SLB Effective Segment ID Register (SLB_ESID)

The SLB Effective Segment ID Register is used to access the upper portion of an SLB entry. The SLB_ESID
contains the effective segment ID and a bit that indicates if the SLB entry selected by the SLB Index Register
is valid.

This register can be written using a single 64-bit store operation or two 32-bit store operations.1 When using
32-bit operations, the first store must be to the most-significant word. The second store must be to the least-
significant word.

Note: Some implementations can support a cache of effective-to-real-address translations (ERATs) to
improve performance. Setting the valid bit to ‘0’ does not invalidate any cached translations of the SLB entry.
The SLB Invalidate Entry Register must be used for this purpose.

1. In general, 64-bit access to an address range that includes a 32-bit MMIO register is not allowed except when specified
explicitly as in this instance.

Address Read/Write

Base Address Offset (BP_Base | P2(n)) + x‘01110’, where n is an SPE number.

ESID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ESID V Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:35 ESID Effective segment ID.

36 V When set, indicates that the SLB entry is valid.

37:63 Reserved Set to zeros.
Storage Addressing

Page 202 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
14.2.4 SLB Virtual Segment ID Register (SLB_VSID)

The SLB Virtual Segment ID Register is used to access the lower portion of an SLB entry. The SLB_VSID
contains the virtual segment ID and other miscellaneous characteristics of the memory segment. The SLB
entry is selected by the SLB Index Register (see page 201).

This register can be written using a single 64-bit store operation or two 32-bit store operations.1 When using
32-bit operations, the first store must be to the most-significant word. The second store must be to the least-
significant word.

1. In general, 64-bit access to an address range that includes a 32-bit MMIO register is not allowed except when specified
explicitly as in this instance.

Access Type Read/Write

Base Address Offset (BP_Base | P2(n)) + x‘01118’, where n is an SPE number.

VSID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

VSID

Ks Kp N L C

R
es

er
ve

d

LP Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:51 VSID Virtual segment ID.

52 Ks
Supervisor (privileged) state storage key
This value, along with the Kp bit, is used to compute a key that is used with the page protection (PP)
bits in the PTE for storage protection.

53 Kp
Problem-state storage key
This value, along with the Ks bit, is used to compute a key that is used with the PP bits in the PTE
for storage protection.

54 N

No execute segment
0 Instruction fetches are allowed.
1 Instruction fetches are not allowed.
This is bit is ignored by the MFC.

55 L

Virtual page-size selector
The size of the large page selected by the SLB is the L bit concatenated with the LP field (L || LP).
The page sizes supported are implementation dependent. The number of concurrent page sizes
supported is also implementation dependent. If an implementation supports more page sizes than
can be concurrently supported by L || LP, a configuration mechanism should be provided to assign
a page size to an L || LP value. This configuration should not change frequently. Therefore, the con-
figuration mechanism does not need to be directly accessible by privileged software.
The page size selected by L || LP must match the page size in the PTE when searching the page
table. (See Appendix E on page 315 for more details.)

56 C
Class
The class field is used in conjunction with the SLB Invalidate Entry Register (see page 205). It is
used as an additional qualifier for the ESID when multiple virtual address spaces exist.

57 Reserved Set to zero.
Version 1.02
October 11, 2007

Storage Addressing

Page 203 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
58:59 LP

Virtual page-size selector
The size of the large page selected by the SLB is the L bit concatenated with the LP field (L || LP).
The page sizes supported are implementation dependent. The number of concurrent page sizes
supported is also implementation dependent. If an implementation supports more page sizes than
can be concurrently supported by L || LP, a configuration mechanism should be provided to assign
a page size to an L || LP value. This configuration should not change frequently. Therefore, the con-
figuration mechanism does not need to be directly accessible by privileged software.
The page size selected by L || LP must match the page size in the PTE when searching the page
table. (See Appendix E on page 315 for more details.)

60:63 Reserved Set to zeros.

Bits Field Name Description
Storage Addressing

Page 204 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
14.2.5 SLB Invalidate Entry Register (SLB_Invalidate_Entry)

This register can be written using a single 64-bit store operation or two 32-bit store operations.1 When using
32-bit operations, the first store must be to the most-significant word. The second store must be to the least-
significant word.

Any write to the least-significant word causes an entry in the SLB to be invalidated. Writing only the least-
significant word will invalidate an entry that matches the upper bits of the SLB_ESID value (contained in the
most-significant word) concatenated with the lower bits of the SLB_ESID (provided by data written to the
least-significant word).

1. In general, 64-bit access to an address range that includes a 32-bit MMIO register is not allowed except when specified
explicitly as in this instance.

Address Write

Base Address Offset (BP_Base | P2(n)) + x‘01120’, where n is an SPE number.

ESID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ESID C Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:35 ESID Effective segment ID.

36 C
Class.
The class field is used in conjunction with the SLB Invalidate Entry Register. It is used as an addi-
tional qualifier for the ESID when multiple virtual address spaces exist.

37:63 Reserved Set to zeros.
Version 1.02
October 11, 2007

Storage Addressing

Page 205 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
14.2.6 SLB Invalidate All Register (SLB_Invalidate_All)

A write to the SLB Invalidate All Register causes the Valid (V) bit in all entries of the SLB to be set to ‘0’,
making the entries invalid. The remaining fields of each entry are undefined.

This register can be written using a single 64-bit store operation or two 32-bit store operations.1 Any write to
the least-significant word causes all entries in the SLB to be invalidated.

Implementation Note:

The SLB Invalidate All Register for an SPE MMU clears the V bit of SLB entry 0. This differs from the
PowerPC slbia instruction, which does not clear the V bit of SLB entry 0.

1. In general, 64-bit access to an address range that includes a 32-bit MMIO register is not allowed except when specified
explicitly as in this instance.

Access Type Write

Base Address Offset (BP_Base | P2(n)) + x‘01128’, where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 Reserved
Set to zeros.
The data for this register is reserved for future use. Writing to this register causes the contents of
the segment lookaside buffer to be voided.
Storage Addressing

Page 206 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
14.3 Translation Lookaside Buffer Management

The translation lookaside buffer is an on-chip cache that stores page-table entries for the most recently
accessed pages. It enhances performance by eliminating the need to access the page table from memory
during load-store operations.

The CBEA permits both a hardware TLB reload and a software TLB reload when a translation is not found in
the TLB table. For an SPE, the TLB reload mode is selected by the Load Control (TL) bit of the MFC State
Register One (see page 221). For a PPE, the TLB reload mode is selected by the TL bit of the Logical Parti-
tioning Control Register (LPCR[53]). For more information, see the specific implementation documentation.

Note: Software management of the TLB is a CBEA extension to the PowerPC Architecture (see Section E
Extensions to the PowerPC Architecture on page 315).

One difference between a hardware TLB reload and a software TLB reload is the point at which the data
storage interrupt (DSI) or SPE interrupt is presented to a PPE. For a software TLB reload, the interrupt is
generated when a translation is not found in the TLB. For a hardware TLB reload, the interrupt is generated
only after the page table is searched by hardware and a translation is not found. The TLB management facili-
ties function identically for hardware-managed and software-managed TLB reloads.

Programming Note:

When updating a TLB entry in a PPE or SPE that is set to operate in software TLB reload mode, software
should set both the Reference (R) bit and the Change (C) bit in the TLB Real Page Number Register (see
page 212). Software cannot rely on an interrupt when an access is performed to a page whose corresponding
TLB entry has the R bit set to zero, or when a write (store or direct memory access [DMA] put) is performed to
a page whose corresponding TLB entry has the C bit set to zero. Software should use the page protection
bits in the TLB to manage the R and C bits in the software page table.

Implementation Note:

An implementation can choose how to handle the following cases when operating in software TLB reload
mode:

• The R bit is '0', and an access is performed to the page.
• The C bit is '0', and a write operation is performed to the page.

The implementation can choose one of the following actions:

• Ignore the R and C bits.
• Generate a data storage interrupt.
• Update the R and C bits in the TLB.

The hardware-accessed page table is a variably sized data structure that specifies the mapping between
virtual page numbers and real page numbers. Each PTE maps one virtual page number to one real page
number. The hardware-accessed page table search is defined in PowerPC Architecture, Book III. If the trans-
lation is not found in the hardware-accessed page table because of a page or mapping fault, either a DSI (for
a PPE) or an interrupt (for an SPE) is posted to the PPE.
Version 1.02
October 11, 2007

Storage Addressing

Page 207 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
In software TLB reload mode, the format of the page table is software dependent. The table is not accessed
by hardware. When a DSI or an SPE interrupt is posted indicating a translation is not available in the TLB,
software should perform a page table search to resolve the TLB miss. In this mode, the MFC Storage
Description Register is not used.

For an SPE TLB, a switch between software and hardware management is made by setting the TL bit in MFC
State Register One (see page 221). To switch SPE TLB management modes, software should suspend the
MFC command queue operation and issue a sync instruction before the switch. Switching modes in a PPE is
implementation dependent. The registers defined in this section provide the same function for both a PPE
and an SPE. The PPE registers are located in the SPR space (see Table C-1 on page 309), and the SPE
registers are located in the CBEA memory map (see Table A-2 on page 296). The effective address of the
operation that causes a translation fault in a PPE is placed in the PPE Data Address Register, defined in the
PowerPC Architecture. The effective address of the operation that causes a translation fault in the MFC is
placed in the MFC Data Address Register (see page 225). The MFC Data Address Register is independent
for each MFC, and the PPE Data Address Register is independent for each PPE.

14.3.1 TLB Mapping

The MFC TLB area must be marked caching inhibited and guarded. It should be restricted to privileged mode
code.

In software TLB management mode, hardware must set the TLB Index Hint Register (see page 209) to the
TLB entry selected for replacement. Software can change the selected entry as long as the new entry is
within the same congruency class. Software must perform the following sequence of operations to replace a
TLB entry:

1. Set the index of the TLB entry to be replaced.

2. Set the new contents for the real page number (RPN) portion of the TLB entry.

Note: A write to the RPN portion of the TLB does not cause the TLB entry to be updated.

3. Set the new contents for the virtual page number (VPN) portion of the TLB entry along with the Valid bit.

Note: A write to the VPN portion of the TLB causes the TLB entry to be updated.

Programming Note:

Depending upon the implementation, invalidating the TLB entry using a tlbie (local) instruction or the TLB
Invalidate Entry Register (see page 214) can cause more than one TLB entry to be invalidated (a congruency
class, for example). When the TLB is software managed, privileged software must keep a shadow copy of the
state of the TLB table. Software must reenable the entries that were not meant to be invalidated.

The size and format of the TLB are implementation dependent. The TLB contents are described in the
specific implementation documentation.
Storage Addressing

Page 208 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
14.3.2 TLB Index Hint Register (TLB_Index_Hint)

This register is only used in software management mode. This register is an SPR in a PPE and is accessible
using an mfspr instruction. This register is mapped into MMIO space for an SPE.

Hardware must set the TLB Index Hint Register to the TLB entry selected for replacement when a translation
fault occurs. When software manages the TLB, the TLB Index Hint Register is used to determine which TLB
entry the hardware algorithm selected for replacement. Software can read the TLB Index Hint Register and
use this value as the TLB Index Register, or it can select a new index within the same congruency class. The
TLB Index Hint Register is useful because software cannot always determine the best entry for replacement
(that is, the least recently used). See the specific implementation documentation for more information about
the TLB Index Hint Register.

The TLB Index Hint Register is a separate register from the TLB Index Register (see page 210) to prevent
hardware from changing the index if a fault occurs while software is updating a TLB entry.

Access Type Read Only

Base Address Offset (BP_Base | P1(n)) + x‘0500’, where n is an SPE number.

PPE SPR Number x‘3B2’

Reserved Index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Index

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:26 Reserved Set to zeros by hardware.

27:63 Index

Index.
This field contains information that is used by an implementation to update a TLB entry.
The TLB index in the Index field is a function of the virtual address. The function is implementation-
dependent. The number of bits in this field is also implementation dependent.
Version 1.02
October 11, 2007

Storage Addressing

Page 209 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
14.3.3 TLB Index Register (TLB_Index)

This register is only used in software management mode. This register is an SPR in a PPE and is accessible
using either an mfspr or an mtspr instruction. This register is mapped into MMIO space for an SPE.

The TLB Index Register is used to select the entry in the TLB that will be modified by the TLB Virtual Page
Number Register (see page 211) and the TLB Real Page Number Register (see page 212).

Access Type Write

Base Address Offset (BP_Base | P1(n)) + x‘0508’, where n is an SPE number.

PPE SPR Number x‘3B3’

Reserved LVPN Index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Index

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:15 Reserved Set to zeros.

16:26 LVPN
Lower virtual page number. These are the lower 11 bits of the virtual page number (the abbreviated
VPN from the TLB Virtual Page Number Register (see page 211) concatenated with the LVPN
yields the VPN).

27:63 Index
This field contains information used by an implementation to update a TLB entry.
The TLB index in the Index field is a function of the virtual address. The function is implementation-
dependent. The number of bits in this field is also implementation dependent.
Storage Addressing

Page 210 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
14.3.4 TLB Virtual Page Number Register (TLB_VPN)

This register is only used in software management mode. This register is an SPR in a PPE and is accessible
using either an mfspr or an mtspr instruction. This register is mapped into MMIO space for an SPE.

The TLB Virtual Page Number Register provides access to the upper 64 bits (or the virtual page number
portion) of the TLB entry. For more information, see the description of the page table entry in PowerPC Archi-
tecture, Book III.

Note: If the VPN is invalidated to change the protection attributes of a page, or to “steal” a page, a TLB inval-
idate entry command must be issued to invalidate any cache of the effective-to-real-address translation that
can be associated with the TLB entry being invalidated.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0510’, where n is an SPE number.

PPE SPR Number x‘3B4’

AVPN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AVPN SW L H V

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:56 AVPN Abbreviated virtual page number.

57:60 SW An optional field available for software use.

61 L

Virtual page-size indicator.
0 4 KB
1 Virtual pages are large.

The size of the page is controlled by the LP field in the TLB Real Page Number Register
(see page 212).

62 H
Hash function identifier.
0 Primary hash
1 Secondary hash

63 V
0 Entry invalid
1 Entry valid
Version 1.02
October 11, 2007

Storage Addressing

Page 211 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
14.3.5 TLB Real Page Number Register (TLB_RPN)

This register is only used in software management mode. This register is an SPR in a PPE and is accessible
using either an mfspr or an mtspr instruction. This register is mapped into MMIO space for an SPE.

The TLB Real Page Number Register provides access to the lower 64-bits (or the real page number portion)
of the TLB entry. For more information, see the description of the page table entry in PowerPC Architecture,
Book III.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0518’, where n is an SPE number.

PPE SPR Number x‘3B5’

R
es

er
ve

d

R
es

er
ve

d

ARPN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ARPN LP R
es

er
ve

d
AC R C W I M G N PP

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 Reserved Set to zeros.

1 Reserved Set to zeros.

2:43 ARPN Abbreviated real page number

44:51 LP

Size selector for a large virtual page.
This field is used to select the size of a large page from the hardware-defined list of page sizes. This
field supports up to eight concurrent large page sizes. The size of a page selected by the LP field is
implementation dependent. The number of concurrent page sizes supported is also implementation
dependent. Depending on the page size, the bits in this field represented by “a” (those to the left of
the first zero) might be concatenated with the ARPN field to form the RPN for a successful lookup.
aaaaaaaa MFC_TLB_VPN[L] = ‘0’.
aaaaaaa0 If MFC_TLB_VPN[L] = '1', large page size one is selected.
aaaaaa01 If MFC_TLB_VPN[L] = '1', large page size two is selected.
...
01111111 If MFC_TLB_VPN[L] = '1', large page size eight is selected.

52:53 Reserved Set to zeros.

54 AC
Address compare bit.
0 Data address compare disabled for the corresponding virtual page.
1 Data address compare enabled for the corresponding virtual page.

55 R Reference bit. The effects of this bit in software management mode are implementation dependent.

56 C Change bit. The effects of this bit in software management mode are implementation dependent.

57 W Write-through storage control bit.

58 I Caching-inhibit storage control bit.
Storage Addressing

Page 212 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
59 M Memory-coherency storage control bit.

60 G Guarded storage control bit.

61 N No execute page if N = ‘1’.

62:63 PP Page protection bits.

Bits Field Name Description
Version 1.02
October 11, 2007

Storage Addressing

Page 213 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
14.3.6 TLB Invalidate Entry Register (TLB_Invalidate_Entry)

This register is only used in software management mode or when privileged software preloads a TLB. This
register is not available for a PPE. A PPE uses a tlbie or tlbiel instruction to invalidate TLBs. This register is
mapped into MMIO space for an SPE.

The TLB Invalidate Entry Register is used to invalidate TLB entries in the MFC. The function of this register is
similar to the PowerPC tlbie instruction. Access to this register should be privileged.

The TLB Invalidate Entry Register contains a VPN field and an IS field. The VPN is used to identify the partic-
ular entry to invalidate. The IS field is used to control how selective the invalidate should be.
.

Access Type Write

Base Address Offset (BP_Base | P1(n)) + x‘0540’, where n is an SPE number.

PPE SPR Number No corresponding SPR number exists. A PPE uses the local form of the tlbie
instruction.

IS Reserved VPN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 VPN (Continued) LP L LS

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:1 IS

Invalidation selector.
00 The TLB is as selective as possible in invalidating the TLB entry. The implementation

should use as many VPN bits as possible to eliminate invalidating unnecessary entries.
01 The TLB entry is not invalidated. Any lower-level caches of the translation are invalidated.
10 The TLB does a congruency-class invalidate if the logical-partition ID (LPID) matches the

current value in the MFC Logical Partition ID Register (see page 223).
11 The TLB does a congruency-class invalidate regardless of LPID match.
Implementation Note: An implementation can choose to implement a subset of these options. It is
always acceptable for an implementation to invalidate more TLB entries than specified by this field.
The IS bits are only a useful hint for a performance benefit.

2:25 Reserved Set to zeros.

26:53 VPN Bits 32:59 of the virtual address.

54:61
LP

Size selector for a large virtual page.
This field is used to select the size of the large page from the hardware-defined list of page sizes.
The size of a page selected by the LP field is implementation dependent. The number of concurrent
page sizes supported is also implementation dependent. Depending on the page size selected, the
bits in this field represented by “a” (those to the left of the first zero) might be concatenated with the
VPN field to determine which entries are invalidated.
aaaaaaaa TLB_Invalidate_Entry[L] = ‘0’.
aaaaaaa0 If TLB_Invalidate_Entry[L] = '1', large page size one is selected.
aaaaaa01 If TLB_Invalidate_Entry[L] = '1', large page size two is selected.
...
01111111 If TLB_Invalidate_Entry[L] = '1', large page size eight is selected.
Software should set the least-significant bit of the LP field to the same value as the LS bit for com-
patibility with implementations that only support two large page sizes.
Storage Addressing

Page 214 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
Programming Note:

1. If the VPN is being invalidated to change the protection attributes of a page, or to “steal” a page, a TLB
Invalidate Entry command must be issued to invalidate any cache of the effective-to-real-address transla-
tion that can be associated with the TLB entry being invalidated. The IS field in the TLB Invalidate Entry
command is used to invalidate the cache without affecting TLB entries.

2. Care must be taken in using this function in real-time or TLB-managed environments, because hardware
can invalidate all TLB entries in the associated congruency class. This could adversely affect TLB set
management and real-time deterministic response. To avoid this side effect for real-time environments,
privileged software can use the TLB index and TLB direct modification functions to locate the specific
entry to be invalidated in the congruency class and only invalidate the entry that matches.

62 L
Large Page indicator
0 Page is small (4 KB).
1 Page is large. See LP field.

63 LS

Large Page Selection
0 First large page (The size is implementation dependent.)
1 Second large page (The size is implementation dependent.)
Note: Software should set this bit to the same value as the least-significant bit of the LP field for
compatibility with implementations that only support two large page sizes.

Bits Field Name Description
Version 1.02
October 11, 2007

Storage Addressing

Page 215 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
14.3.7 TLB Invalidate All Register (TLB_Invalidate_All)

This register is only used in software management mode or when privileged software preloads a TLB. This
register is not available for a PPE. A PPE uses a tlbia instruction to invalidate TLBs. This register is mapped
into MMIO space for an SPE.

The TLB Invalidate All Register is used to invalidate all TLB entries in the MFC command queues. The func-
tion of this register is similar to the PowerPC tlbia instruction. Access to this register should be privileged.

Access Type Write

Base Address Offset (BP_Base | P1(n)) + x‘0548’, where n is an SPE number.

PPE SPR Number No corresponding SPR number exists. A PPE uses the local form of the tlbia
instruction.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 Reserved
Set to zeros.
The data for this register is reserved for future use. The writing to this register causes the contents
of the TLB to be voided.
Storage Addressing

Page 216 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
14.4 Real-Mode Storage Control Facilities

14.4.1 PPE Real-Mode Storage Control Facility

The PPE real-mode storage control facility in the PowerPC processor is an optional facility in the PowerPC
Architecture. A PPE supports a 4-bit real-mode storage control (RMSC) field in an implementation-dependent
register.

The RMSC field is used to control the guarded storage control attribute when a PPE is running with transla-
tion off (that is, PowerPC MSR[IR] = ‘0’ and MSR[DR] = ‘0’). Access to this facility should be privileged. The
RMSC field provides a mechanism for setting the boundary between storage that is considered well behaved
and storage that is not. The boundary, as illustrated in Figure 14-1, is a power of 2 from 256 MB up to 4 TB for
1 ≤ n ≤ 15. The RMSC field has no effect when a PPE is running with translation on (that is, PowerPC
MSR[IR] = ‘1’ and MSR[DR] = ‘1’).

If the RMSC field is set to a value of ‘n,’ all accesses within the first 2(n+27) bytes, for 1 ≤ n ≤ 15 of the real
address space are considered well behaved and cacheable. Memory that is well behaved typically has the
guarded (G) attribute set to zero. The caching inhibited (I) attribute can be either ‘0’ or ‘1’ but in real mode is
typically set to ‘0’. Data accesses outside the first 2(n+27) bytes of the real address space can be neither well
behaved nor cacheable. In this case, the guarded (G) attribute is set to ‘1’. Caching is controlled by the Real
Mode Caching Inhibited (RMI) bit in an implementation-dependent PowerPC register in real addressing
mode.

When the RMSC field is set to a value of ‘0’, no data accesses are considered well behaved and caching is
controlled by the RMI bit (that is, I = RMI, G = ‘1’) in real addressing mode. All instruction fetches are not well
behaved but are cacheable (that is, the caching inhibited attribute, I, equals zero, and the guarded attribute,
G, equals ‘1’) in real addressing mode.

Figure 14-1. Real-Mode Storage Boundary (showing instruction fetches and data fetches)

Real Address
Space

0

2n+27 - 1

2n+27

242 - 1

Instruction Fetch Data Fetch

I-bit G-bit I-bit G-bit

0 0 0 0

0 1 RMI 1
Version 1.02
October 11, 2007

Storage Addressing

Page 217 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
14.4.2 MFC Real-Mode Address Boundary Register (MFC_RMAB)

The MFC real-mode address boundary facility in the MFC is an optional facility in the CBEA. The MFC
supports a 4-bit real-mode boundary (RMB) field in this implementation-dependent register.

The RMB field is used to control the caching inhibited (I) and guarded (G) storage control attributes when the
MFC is running with translation off, which means that real-mode addressing is on (that is, MFC_SR1[R] = ‘0’).
See MFC State Register One on page 221 for more information. The 4 lower bits of this register provide a
mechanism for setting the boundary between storage that is considered well behaved and cacheable and
storage that is not. The boundary, as illustrated in Figure 14-2, is a power of 2 from 256 MB up to 4 TB for
1 ≤ n ≤ 15. The RMB field has no effect when the MFC is running with translation on (that is, when the Relo-
cate (R) bit is set to ‘1’ in the MFC State Register One).

For this operation to work properly, privileged software must suspend all MFC operations before modifying
the contents of this register.

The MFC Real-Mode Address Boundary Register is an implementation-dependent register. Access to this
register should be privileged.

Figure 14-2. Real-Mode Storage Boundary (showing all DMA transfers)

Real Address
Space

0

2n+27 - 1

2n+27

242 - 1

All DMA Transfers

I-bit G-bit

0 0

1 1
Storage Addressing

Page 218 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0900’, where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved RMB

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:59 Reserved Set to zeros.

60:63 RMB

Real-mode boundary.
If this field is set to a value of ‘n’, only those accesses within the first 2n+27 bytes for 1 ≤ n ≤ 15 of the
real address space are considered well behaved and cacheable in real addressing mode
(MFC_SR1[R] = ‘0’). All accesses outside the first 2n+27 bytes of the real address space are neither
well behaved nor cacheable in real addressing mode.
If the RMB field is set to a value of x‘0’, no accesses are considered well behaved and cacheable in
real addressing mode.
Version 1.02
October 11, 2007

Storage Addressing

Page 219 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
Storage Addressing

Page 220 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
15. MFC Privileged Facilities

The registers in these sections are only accessed by software. The memory flow controller (MFC) privilege 1
facilities include the following registers:

• MFC State Register One
• MFC Logical Partition ID Register (see page 223)
• MFC Storage Description Register (see page 224)
• MFC Data Address Register (see page 225)
• MFC Data Storage Interrupt Status Register (see page 226)
• MFC Address Compare Control Register (see page 227)
• MFC Local Storage Address Compare Facility (see page 229)
• MFC Command Error Register (see page 231)
• MFC Data Storage Interrupt Pointer Register (see page 232)
• MFC Control Register (see page 233)
• MFC Atomic Flush Register (see page 236)
• SPU Outbound Interrupt Mailbox Register (see page 237)

15.1 MFC State Register One (MFC_SR1)

MFC State Register One contains configuration information that is controlled by a hypervisor. Access to this
register should be privileged.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0000’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved TL S R PR R
es

er
ve

d
T D

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:56 Reserved Reserved.

57 TL

Software or hardware page table search
0 Translation lookaside buffer (TLB) misses are handled by the hardware (segment

lookaside buffer [SLB] and page table entry [PTE] misses are always handled by software).
1 TLB misses are handled by software.
Version 1.02
October 11, 2007

MFC Privileged Facilities

Page 221 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
58 S

Synergistic processor unit (SPU) master run control. Setting this bit to zero suspends the dispatch
of instructions in the SPU. The state of this bit does not affect the state of the SPU Run Status in the
SPU Status Register (see page 97).
0 SPU is stopped.
1 SPU is controlled by the SPU Run Control Register (see page 96).

Programming Note:
The SPU Master Run Control (S) bit allows privileged software to keep an SPU from running even if
an application set the SPU Run bit in the SPU Run Control Register (see page 96). This bit is useful
during power savings mode.

59 R

Relocate.
0 MFC translation is off.
1 MFC translation is on.

Programming Note:
The MFC Relocate (R) bit controls how effective addresses in MFC commands are translated into
real addresses. If the relocate control specifies translation off (R = ‘0’), the effective addresses used
in MFC commands are real addresses and are subject to the real-mode offset control facility. If the
relocate control is enabled (R = ‘1’), the effective addresses used in MFC commands are translated.
The SLB, TLB, and page table facilities are used to translate the effective address to a virtual
address, and then to a real address. With translation on, the real-mode offset control is not involved.

60 PR

Problem state.
0 The MFC has privileged-state access to pages.
1 The MFC has problem-state access to pages.

Programming Note:
The MFC Problem-State (PR) bit is set by privileged software based on the use of the associated
SPU. If the SPU is to be a privileged software resource (not under direct control of an application)
and the function requires the SPU to issue MFC commands with privileged-state access to pages,
this bit should be cleared. If the SPU function is controlled by an application, its MFC access should
be restricted to problem state by the PR bit. The Problem State Control bit interacts with the Ks and
Kp Storage Key bits in the SLB in combination with the Page Protection (PP) bits in the page table,
as defined in PowerPC Architecture, Book III. The problem-state control is only effective in MFC
translation on state (R = ‘1’).

61 Reserved Reserved.

62 T

Bus tlbie enable.
0 Ignore tlbie commands on the bus.
1 Invalidate TLB entries in response to a tlbie on the bus.

Programming Note:
The tlbie (T) bit is typically enabled if page tables are used by multiple PowerPC Processor Ele-
ments (PPEs) and MFCs. If both tlbie-managed and MFC managed TLBs are enabled, the MFC
will participate in broadcast tlbie operations (initiated by a PPE tlbie instruction). If disabled, the
MFC will ignore the tlbie broadcast. This state is useful when each MFC uses its own private page
table.

63 D

Local storage real address decode.
0 Disable system real address of local storage.

The MFC does not decode the local storage area for the associated SPU. All accesses are
ignored. This can be done to save power

1 Enable system real address of local storage
The MFC decodes the local storage area for the associated SPU. All accesses are per-
formed.

Programming Note:
Privileged software can use the Local Storage Real Address Decode Enable/Disable (D) bit to
enable an application to physically address local storage. In addition to setting the D bit, privileged
software must set up the page table or an implementation-dependent I/O translation mechanism to
map the local storage into the application’s effective address space. Setting this bit does not affect
the addressing of local storage by SPU load and store instructions or MFC commands. This bit only
affects the access of the local storage using an effective address.

Bits Field Name Description
MFC Privileged Facilities

Page 222 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
15.2 MFC Logical Partition ID Register (MFC_LPID)

The PowerPC Architecture provides a logical partitioning (LPAR) facility to permit processors and portions of
main storage to be allocated to logical groups or partitions. For more information about the LPAR, see
PowerPC Architecture, Book III. The Cell Broadband Engine Architecture (CBEA) extends the LPAR facility to
allow SPEs to also be assigned to partitions. The MFC Logical Partition ID Register contains a value that
identifies the partition to which an SPE is assigned.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0008’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved LPID

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:55 Reserved Reserved

56:63 LPID Logical partition ID.
Version 1.02
October 11, 2007

MFC Privileged Facilities

Page 223 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
15.3 MFC Storage Description Register (MFC_SDR)

The MFC Storage Description Register contains the starting address in main storage of the page table for the
associated MFC and the size of the page table. The MFC Storage Description Register provides the same
function as the PowerPC Storage Description Register (SDR1). For more information about the SDR1, see
PowerPC Architecture, Book III.

When an SPE is configured for software TLB management (that is, MFC_SDR[TL] = '1'), the value in this
register is not used.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0400’; where n is an SPE number.

R
es

er
ve

d

HTABORG

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

HTABORG Reserved HTABSIZE

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:1 Reserved Reserved.

2:45 HTABORG

Page table origin (real address of the page table).
The HTABORG field in MFC_SDR contains the high-order 44 bits of the 62-bit real address of the
page table. The page table is thus constrained to lie on a 218 byte (256 KB) boundary at a minimum.
The number of low-order zero bits in HTABORG must be greater than or equal to the value in
HTABSIZE.
For implementations that support a real address size of only m bits, where m is less than 62, the
upper bits of the page table origin are treated as reserved bits. Software must set them to zeros.

46:58 Reserved

59:63 HTABSIZE

Encoded size of page table.
The HTABSIZE field in MFC_SDR contains an integer giving the number of bits (in addition to the
minimum of 11 bits) from the hash that are used in the page table index. This number must not
exceed 28.
MFC Privileged Facilities

Page 224 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
15.4 MFC Data Address Register (MFC_DAR)

The MFC Data Address Register contains the effective address associated with an MFC data segment inter-
rupt or an MFC data storage interrupt. The function of this register is similar to the PowerPC Data Address
Register (DAR). For more information about the DAR, see PowerPC Architecture, Book III. Access to this
register should be privileged.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0620’; where n is an SPE number.

Effective Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Effective Address

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 Effective Address Effective address associated with the data segment or data storage interrupt.
Version 1.02
October 11, 2007

MFC Privileged Facilities

Page 225 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
15.5 MFC Data Storage Interrupt Status Register (MFC_DSISR)

The MFC Data Storage Interrupt Status Register contains the status that defines the cause of the MFC data
storage interrupt. The function of this register is similar to the PowerPC Data Storage Interrupt Status
Register (DSISR). For more information, see PowerPC Architecture, Book III. Access to this register should
be privileged.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0610’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
es

er
ve

d

M R
es

er
ve

d

P A S R
es

er
ve

d

C Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32 Reserved Set to ‘0’.

33 M Set to ‘1’ if the PTE is not found or a TLB miss occurs while in software-managed TLB mode.

34:35 Reserved Set to zeros.

36 P Set to ‘1’ if the access is not permitted by the storage protection mechanism.

37 A Set to ‘1’ if the atomic access is to a write through or caching inhibited page.

38 S Set to ‘1’ if the access was a put[rlfbs], a putll[u]c, or an sdcrz operation.

39:40 Reserved Set to zeros.

41 C Set to ‘1’ if a data address compare match occurs (all DMA issue activity is halted).

42:63 Reserved Set to zeros.
MFC Privileged Facilities

Page 226 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
15.6 MFC Address Compare Control Register (MFC_ACCR)

The MFC data address compare mechanism allows the detection of DMA access to a virtual page marked
with the Address Compare (AC) bit in the page table entry (PTE) set and to a range within the local storage.
This facility is normally used for debug. This debug mechanism is controlled by the MFC Address Compare
Control Register for both effective address and local storage address compares. For effective address
compares, the AC bit in the page table entry controls which pages are included in the comparison. For local
storage compares, the MFC local storage address compare facility contains the address used for the compar-
ison and a mask indicating which address bits should be included in the comparison.

An effective address compare match occurs for a put, get, getllar, putll[u]c, or sdcrz operation if the
following conditions are true for any byte accessed (including effective addresses used in list commands):

• The PTE AC bit is set, the operation is a put, and the MFC_ACCR Put (Ep) bit is set.
• The PTE AC bit is set, the operation is a get, and the MFC_ACCR Get (Eg) bit is set.

A local storage address compare match occurs for a put, get, getllar, putllc, and putlluc operation if, for any
byte access, the following conditions are true (including local storage addresses accessed by list commands).
The local storage address value compare occurs before the SPU Local Storage Limit Register wrap (if any) is
applied.

• The operation is a put, the local storage address being read matches the address range specified by the
bit-wise AND of the local storage compare address mask and the local storage compare address in the
MFC local storage address compare facility, and the Local Storage Put bit (Lp) in the MFC_ACCR is set.

• The operation is a get, the local storage address being written matches the address range specified by
the bit-wise AND of the local storage compare address mask and the local storage compare address in
the MFC local storage address compare facility, and the Local Storage Get bit (Lg) in the MFC_ACCR is
set.

Once an effective address compare match occurs, an MFC data storage interrupt is presented, and the C bit
is set in the MFC Data Storage Interrupt Status Register (see page 226). Once a local storage address
compare match occurs, a class 1 interrupt is presented, and the LP or LG bits are set in the Class 1 Interrupt
Status Register (see page 281). For both effective address and local storage address compares, all MFC
DMA operations are stopped at the command that caused the compare match. Some portion or all of the
command might have been completed before the stop. Due to the weakly ordered model, additional
commands might also have been started when the address compare occurs. For effective address compares,
the MFC Data Storage Interrupt Pointer Register (see page 232) will contain the index of the command that
triggered the address compare. The MFC_DAR will contain the effective address of the access that triggered
the compare condition.

For local storage address compare matches, the MFC_LSCRR contains the local storage address of the
access that triggered the compare condition and the index of the command that triggered the address
compare.

For both effective address and local storage address compare stops, the DMA operations can be resumed by
writing the MFC Control Register with the Sc bit cleared, which indicates resume normal operation. In addition
to setting the Sc bit to zero, the AC bit in the PTE must be reset. The R bit in the MFC Control Register must
also be set to resume a command stopped due to an effective address compare. Setting the R bit causes the
MFC to retranslate the command.

Access to this register should be privileged.
Version 1.02
October 11, 2007

MFC Privileged Facilities

Page 227 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0600’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Lp Lg R
es

er
ve

d

Ep Eg

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:58 Reserved Reserved.

59 Lp
Local storage put.
Enable of local storage address for put commands (includes putll[u]c operations).

60 Lg
Local storage get.
Enable of local storage address for get commands.

61 Reserved Reserved.

62 Ep
Effective address put.
Enable of effective address for put commands (includes sdcrz and putll[u]c operations).

63 Eg
Effective address get.
Enable of effective address for get commands.

Note: There is no restriction on the setting of enables in this register.
MFC Privileged Facilities

Page 228 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
15.7 MFC Local Storage Address Compare Facility

Section 15.6 MFC Address Compare Control Register on page 227 explains how to use this facility. This
facility consists of the following registers:

• MFC Local Storage Address Compare Register
• MFC Local Storage Compare Result Register (see page 230)

15.7.1 MFC Local Storage Address Compare Register (MFC_LSACR)

The MFC local storage address compare facility contains the local storage address and local storage address
mask to be used in the MFC local storage address compare operation selected by the MFC Address
Compare Control Register (see page 227). Access to this register should be privileged.

A local storage address compare occurs when the local storage address (LSA) accessed is within the range
of addresses specified by the bit-wise AND of the Local Storage Compare Address Mask (LSCAM) and the
Local Storage Compare Address (LSCA) fields.

• Get Match = ((LSCA & LSCAM) == (LSA & LSCAM)) && MFC_ACCR[Lg]

• Put Match = ((LSCA & LSCAM) == (LSA & LSCAM)) && MFC_ACCR[Lp]

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0808’; where n is an SPE number.

LSCAM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSCA

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 LSCAM

Local storage compare address mask.
The number of bits implemented in the mask field is implementation dependent.
A ‘0’ value written to a bit in this field makes the corresponding bit in the local storage address a
“don’t care” in the MFC local storage address compare operation.
A ‘1’ value written to a bit in this field includes the corresponding local storage address bit in the
MFC local storage address compare operation.

32:63 LSCA
Local storage compare address.
The number of upper bits implemented in the address and mask fields is implementation depen-
dent.
Version 1.02
October 11, 2007

MFC Privileged Facilities

Page 229 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
15.7.2 MFC Local Storage Compare Result Register (MFC_LSCRR)

The MFC Local Storage Compare Result Register contains the local storage address that triggered the
compare along with the MFC command queue index of the MFC command that triggered the compare stop.
The contents of this register are only valid when a class 1 interrupt occurs with the Lp or Lg Interrupt Status
bits set. (For more information about class 1 interrupts, see Section 21.5.2 on page 272.) The Q bit indicates
if the command was executed from the MFC proxy command queue or MFC SPU command queue.

Access to this register should be privileged. The contents of this register become indeterminate once MFC
operation is resumed.

Access Type Read Only

Base Address Offset (BP_Base | P1(n)) + x‘0810’; where n is an SPE number.

Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Q MFC Command Queue Index

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Address Address of access triggering local storage address compare

32 Q
Command queue
0 Index is for the MFC proxy queue.
1 Index is for the MFC SPU queue.

33:63 MFC Command Queue
Index

MFC command queue index.
Points to the queue entry that triggered the compare stop.
MFC Privileged Facilities

Page 230 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
15.8 MFC Command Error Register (MFC_CER)

The MFC Command Error Register contains the index of the command in the MFC command queue associ-
ated with an MFC error condition. When the MFC detects an error, all processing is suspended until the error
is cleared and the MFC DMA operation is restarted. The MFC DMA operation is restarted by writing the MFC
Control Register (see page 233) with the MFC_CNTL[R] bit set.

Note: Command errors can occur on the MFC proxy and MFC SPU command queues. The MFC must stop
execution on the first error. The MFC Command Error Register must point to the command that caused the
first error.

Access Type Read Only

Base Address Offset (BP_Base | P1(n)) + x‘0C00’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Q MFC Command Queue Index

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32 Q
Command queue.
0 Index is for the MFC proxy queue.
1 Index is for the MFC SPU queue.

33:63 MFC Command Queue
Index

MFC command queue index.
Points to the queue entry that caused the command error. The number of bits implemented in this
field is implementation dependent.
Version 1.02
October 11, 2007

MFC Privileged Facilities

Page 231 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
15.9 MFC Data Storage Interrupt Pointer Register (MFC_DSIPR)

The MFC Data Storage Interrupt Pointer Register contains the index for the command in the DMA command
queue associated with an MFC data storage interrupt (DSI) or an MFC data segment interrupt.

The cause of an MFC data storage interrupt is identified in the MFC Data Storage Interrupt Status Register
(see page 226).

Implementation Note:

Only one translation fault can be outstanding. The implementation can either stop all MFC command queue
processing on the first translation error, or it can continue processing. If processing continues, all ordering
rules must be followed. (A command must not be processed if it is dependent on a command that is waiting
for a translation fault to be resolved.) The state of the MFC must appear as if the command (or partial com-
mand) was never issued. This is also the case if a second translation fault occurs.

Access Type Read Only

Base Address Offset (BP_Base | P1(n)) + x‘0800’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Q MFC Command Queue Index

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32 Q
Command queue.
0 Index is for the MFC proxy queue.
1 Index is for the MFC SPU queue.

33:63 MFC Command Queue
Index

MFC command queue index.
Points to the command that caused the data storage interrupt. The number of bits implemented in
this field is implementation dependent.
MFC Privileged Facilities

Page 232 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
15.10 MFC Control Register (MFC_CNTL)

The MFC Control Register allows privileged software to govern the operation of the MFC and the MFC
commands. There is one register for each SPU within an SPU group.

Setting the Suspend Control (Sc) bit while the Suspend Mask (Sm) bit is a ‘0’ causes the MFC to stop
executing commands. The MFC_CNTL[Sc] bit is ignored if MFC_CNTL[Sm] is a ‘1’ when the MFC Control
Register is written. MFC commands might still be enqueued while an MFC command queue is suspended. To
change the state of MFC_CNTL[Sc], MFC_CNTL[Sm] must be set to zero. If MFC_CNTL[Sm] is set to one,
the state of MFC_CNTL[Sc] will not be updated. MFC_CNTL[Sm] should be written as a ‘1’ value when the
MFC Control Register is written with no intent to change the current MFC operation state (suspended or
normal).

Setting the Purge (Pc) bit in this register causes the MFC to remove all commands from the MFC command
queue. Hardware resets this bit when a purge operation completes. MFC commands are not enqueued while
the MFC command queue is in the purge state.

Setting the Restart (R) bit of this register causes the MFC command with a pending translation fault to be
reissued. Hardware resets MFC_CNTL[R] automatically after a pending MFC command is reissued.

Note: MFC_CNTL[R] should not be set to resume an MFC command that stopped due to a local storage
address compare.

The restart operation is only effective if the MFC command queue is in normal queue operational status. Soft-
ware must set MFC_CNTL[R] to ‘1’ to resume an MFC command either after one of the faults listed below or
after a page protection fault has been indicated.

• A fault is either a data segment interrupt or a data storage interrupt with the Miss (M) bit set in the MFC
Data Storage Interrupt Status Register (see page 226).

• A page protection fault is a data storage interrupt with the Protection (P) bit set in the MFC_DSISR.

Software can set the MFC_CNTL[Sc] bit and the MFC_CNTL[R] bit in the same memory-mapped I/O (MMIO)
write operation.

The Decrementer Halt (Dh) bit allows privileged software to stop the decrementer. The decrementer remains
halted until MFC_CNTL[Dh] is reset and the SPU issues a write channel (wrch) instruction to the SPU decre-
menter.

The Decrementer Status (Ds) bit reflects the state of the decrementer (running or not running). This allows
privileged software to determine if the application running in the SPU used the decrementer. The state of the
decrementer is required for the context save and resume of an SPE.

When either an MFC command error, an effective address compare stop, a local storage address compare,
or an MFC hardware error occurs, hardware sets MFC_CNTL[Sc] to suspend MFC command queue opera-
tion. MFC operations are suspended for both MFC command queues. The MFC command queue status
changes to MFC command queue operation suspended (Ss equals ‘11’) when all outstanding DMA transfers
are complete.
Version 1.02
October 11, 2007

MFC Privileged Facilities

Page 233 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
To resume normal MFC command queue operations:

• After an effective address compare stop, the AC bit in the PTE must be reset. Then, the MFC Control
Register must be written to set MFC_CNTL[Sc] to ‘0’ and to reset MFC_CNTL[R] to ‘1’.
Resetting MFC_CNTL[R] causes the MFC to retranslate the command.

• After a local storage address compare stop, the MFC Control Register must be written to set
MFC_CNTL[Sc] to ‘0’. Do not set the MFC_CNTL[R] bit to resume an MFC command stopped due to a
local storage address compare.

• After an MFC command or an MFC hardware error, the Purge Sequence bits (Pc and Ps) should be
issued before setting normal MFC command queue operation mode.

Access Type Read/Write

Base Address Offset (BP_Base | P2(n)) + x‘03000’; where n is an SPE number.

Reserved

Ds Reserved Dh R
es

er
ve

d

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Ps Reserved Pc Q Reserved Ss Reserved Sm Reserved Sc

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:22 Reserved Reserved.

23 Ds
SPU decrementer status. This is a read only field. Data written to this field will be ignored.
0 Decrementer not running.
1 Decrementer running.

24:27 Reserved Reserved.

28 Dh

SPU decrementer halt.
0 Decrementer is allowed to run if activated by a write to the SPU Write Decrementer Chan-

nel.
1 Decrementer halted.

29:30 Reserved Reserved.

31 R

Restarts the MFC command that caused the translation fault or an effective address compare stop.
Note: This bit must not be set to resume an MFC command stopped due to a local storage address
compare. This bit must be set to ‘1’ to restart the MFC command operation that caused a translation
fault or an effective address compare stop. This bit is automatically reset by hardware after the MFC
command has been resumed.

0 No MFC command restart requested.
1 Write: Restart MFC command.

Read: MFC command reissue pending.

32:37 Reserved Reserved.

38:39 Ps

MFC command queue purge status. This is a read only field. Data written to this field will be
ignored.
00 Purge request not outstanding.
01 Purge of MFC command queues in process (some implementations can choose not to

implement this state.
11 Purge of MFC command queues is complete.
MFC Privileged Facilities

Page 234 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
Implementation Note:

Once the MFC_CNTL[Sc] bit is set, hardware must stop issuing any new transactions. It must record the
state of the MFC command so that it can be restarted in the future. However, hardware can complete any cur-
rent outstanding transactions. If an MFC command is being divided into a series of smaller transactions, hard-
ware must stop the process. Hardware is allowed to complete any transactions divided into a series of
smaller transactions before MFC_CNTL[Sc] was set. All MFC commands, including any partial transactions,
must be flushed before setting the suspended status. Hardware must purge all commands (partial or com-
plete) once the Purge bit is set, but it can complete any current outstanding transactions.

40:47 Reserved Reserved.

48 Pc
Purge MFC commands from the MFC SPU command queue and MFC proxy command queue.
0 No purge of MFC command queues requested.
1 Purge MFC command queues request.

49 Q

MFC command queue empty status. This is a read only field. Data written to this field is ignored.
0 MFC SPU command queue and MFC proxy command queue are not empty.
1 MFC SPU command queue and MFC proxy command queue are both empty. All

MFC commands are complete.

50:53 Reserved Reserved.

54:55 Ss

MFC command queues suspend status. This is a read only field. Data written to this field will be
ignored.
00 Normal MFC command queues operation.
01 Suspend of MFC command queues in process (some implementations can choose not to

implement this state).
11 MFC command queue operation suspended (both queues).

56:58 Reserved Reserved.

59 Sm

Suspend mask
This bit is used to control the effect of the MFC_CNTL[Sc] bit when writing the MFC Control Regis-
ter. System software uses this bit to avoid unintentional changes to the MFC state.
0 Effect of Sc bit is enabled.
1 Effect of Sc bit is disabled.

60:62 Reserved Reserved.

63 Sc
Suspend control. Suspend MFC command queues operation.
0 Normal MFC command queue operation request (both queues).
1 Suspend MFC command queue operation request (both queues).

Bits Field Name Description
Version 1.02
October 11, 2007

MFC Privileged Facilities

Page 235 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
15.11 MFC Atomic Flush Register (MFC_Atomic_Flush)

The MFC Atomic Flush Register is implementation dependent, and access should be privileged. Privileged
software uses this register to clear the contents of the cache used for atomic DMA commands and releases
any current reservations. Data in the cache that is considered modified is pushed to memory, and the line is
invalidated. Valid lines in the cache that are not considered modified are invalidated.

For this operation to work properly, privileged software must suspend the MFC command queues.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0200’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved F

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:62 Reserved Reserved.

63 F

Flush enable or status.
When software sets this bit to ‘1’, the contents of the atomic unit are flushed. Hardware resets the
bit when the flush operation is complete. Software should never write a ‘0’ to this field. Software
should poll this register for completion of the flush operation.
MFC Privileged Facilities

Page 236 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
15.12 SPU Outbound Interrupt Mailbox Register (SPU_Out_Intr_Mbox)

The SPU Outbound Interrupt Mailbox Register is used to read 32 bits of data from the SPU outbound interrupt
mailbox queue of the corresponding SPU. The SPU Outbound Interrupt Mailbox Register has a corre-
sponding channel (see page 140) for writing data into the SPU outbound interrupt mailbox queue.

A write channel (wrch) instruction that targets the SPU outbound interrupt mailbox queue loads the 32 bits of
data specified in the instruction into a mailbox queue for other processors or devices to read. An MMIO read
from this register always returns the data in the order written by the SPU. The data returned on a read of an
empty SPU outbound interrupt mailbox queue is undefined.

An MMIO read of the SPU Mailbox Status Register (see page 104) returns the status of the mailbox queues.
The number of valid queue entries in the SPU Outbound Interrupt Mailbox Register is given in the
SPU_Out_Intr_Mbox_Count field of the SPU Mailbox Status Register (that is, SPU_Mbox_Stat
[SPU_Out_Intr_Mbox_Count]).

An MMIO read of the SPU Outbound Interrupt Mailbox Register sets a pending SPU outbound interrupt
mailbox available event. If the amount of data remaining in the mailbox queue is below an implementation-
dependent threshold, and if this condition is enabled (that is, SPU_WrEventMask[Me] set to ‘1’), the SPU
Read Event Status Channel is updated (that is, SPU_RdEventStat[Me] is set to ‘1’) and its channel count is
set to 1. This causes an SPU outbound interrupt mailbox available event.

Implementation Note:

The MFC must not acknowledge the write of the SPU Outbound Interrupt Mailbox Register until a processor
or other device has read the contents of the mailbox.

Access Type MMIO: Read

Base Address Offset (BP_Base | P2(n)) + x‘04000’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Mailbox Data

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32:63 Mailbox Data Application-specific mailbox data.
Each application can uniquely define the mailbox data.
Version 1.02
October 11, 2007

MFC Privileged Facilities

Page 237 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
MFC Privileged Facilities

Page 238 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
16. SPU Privileged Facilities

Synergistic processor unit (SPU) privileged facilities include these registers:

• SPU Privileged Control Register

• SPU Local Storage Limit Register (see page 241)

• SPU Channel Access Facility, which includes:

– SPU Channel Index Register (see page 242)

– SPU Channel Data Register (see page 243)

– SPU Channel Count Register (see page 244)

• SPU Configuration Register (see page 245)

16.1 SPU Privileged Control Register (SPU_PrivCntl)

The SPU Privileged Control Register lets privileged software control the execution environment of the SPU.
The SPU Privileged Control Register can be used to place the SPU into single-instruction-step mode or to
generate a privileged attention event.

Single-instruction-step mode remains in effect until cancelled by writing this register with the Single-Step-
Mode bit reset. When single-step mode is active and the SPU is started using the SPU Run Control Register
(see page 96) or the SPU start command on a direct memory access (DMA) operation, a single instruction or
instruction group is executed. The SPU is stopped, and a class 2 SPU halted interrupt (if enabled) is
presented to the PowerPC Processor Element (PPE). The stopped-by-single-step indicator is set in the SPU
Status Register. Other stop conditions can also be reported along with a single-step stop. Single-step opera-
tion is not available when the SPU is operating in isolation mode (the Isolate [IS] bit in the SPU Status
Register = ‘1’). Setting the single-step mode is ignored if the SPU is in an isolated state.

When this register is written with the Attention Event Request bit set, a privileged attention event is raised on
the SPU. SPU acknowledgment of this event resets this condition. When reading from this register, the
current state of single-step mode is provided. However, the Attention Event Request bit always returns ‘0’.

Privileged code can use the privileged attention event mechanism to trigger an SPU event when the SPU
software supports the SPU privileged attention event (the privileged attention event is enabled). When the
SPU software supports the SPU privileged attention event, it can support requests specific to the operating
environment such as light-weight, application-assisted context switching of SPUs.

Privileged code can use the load enable to prevent an application from issuing an isolation load request to put
the SPU into an isolated state.

Access to this register should be privileged.
Version 1.02
October 11, 2007

SPU Privileged Facilities

Page 239 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
Access Type Read/Write

Base Address Offset (BP_Base | P2(n)) + x‘04040’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Le A S

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:60 Reserved Set to zeros.

61 Le

Isolation load request enable.
0 PPE or SPU isolate load request ignored.
1 PPE or SPU isolate load request allowed.

Writing ‘11’ to the SPU Run Control Register (see page 96) causes the SPU to transition
into the isolated load state.

62 A

Attention event request.
0 No SPU privileged attention event requested.
1 SPU privileged attention event requested.
Note: The Attention Event Request bit always returns ‘0’.

63 S
Single-step mode.
0 Normal operation.
1 SPU will issue an instruction or set of instructions and then stop.
SPU Privileged Facilities

Page 240 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
16.2 SPU Local Storage Limit Register (SPU_LSLR)

The SPU Local Storage Limit Register allows the size of local storage available to an application to be artifi-
cially limited. This register enables privileged software to provide backwards compatibility for applications that
are sensitive to the size of local storage. If an application performs a quadword load or store from the SPU
that is beyond the range of the SPU Local Storage Limit Register, the operation occurs at the wrapped
address.

When an isolation load is requested, the contents of the SPU_LSLR are forced to the maximum value for the
implementation. The contents of the SPU_LSLR are not restored to the previous value when exiting an
isolated state.

Access to this register should be privileged.

Access Type Read/Write

Base Address Offset (BP_Base | P2(n)) + x‘04058’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Local Storage Address Limit

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32:63 Local Storage Address
Limit Implementation dependent.
Version 1.02
October 11, 2007

SPU Privileged Facilities

Page 241 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
16.3 SPU Channel Access Facility

The SPU channel access facility initializes, saves, and restores the SPU channels. The facility consists of
three memory-mapped I/O (MMIO) registers: the SPU Channel Index Register, the SPU Channel Count
Register, and the SPU Channel Data Register. The SPU Channel Index Register is a pointer to the channel
whose count is accessed by the SPU Channel Count Register and whose data is accessed by the SPU
Channel Data Register.

Note: There is also an internal Pending Event Register that is described in Section 9.11 SPU Event Facility
beginning on page 150.

16.3.1 SPU Channel Index Register (SPU_ChnlIndex)

The SPU Channel Index Register selects which SPU channel is accessed using the SPU Channel Count
Register or the SPU Channel Data Register.

Access to this register should be privileged.

Access Type Write1

1. Read should be supported for diagnostic purposes.

Base Address Offset (BP_Base | P2(n)) + x‘04060’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Channel Number

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32:63 Channel Number
This field contains the channel number that is modified by the SPU Channel Count Register or the
SPU Channel Data Register. The number of bits implemented for this field is implementation
dependent. See the specific implementation documentation for more information.
SPU Privileged Facilities

Page 242 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
16.3.2 SPU Channel Data Register (SPU_ChnlData)

The SPU Channel Data Register is used to read or initialize the SPU channel data selected by the SPU
Channel Index Register (see page 242). Initializing or restoring channel data with this register has no effect
on the channel count associated with the channel. In addition, it does not generate any channel packet
activity on the channel interface.

When the channel being serviced by the channel data and index ports supports more than 1-deep first-in,
first-out queues (FIFOs), writing the channel index to specify the channel selects the oldest FIFO entry to be
accessed by the channel data port. Successive accesses to the channel data port will then access succes-
sively newer entries in the FIFO. The behavior of accesses beyond the depth of the FIFO is implementation
dependent; such accesses should be avoided.

Reading or writing the SPU read event status data through this interface provides direct access to the internal
Pending Event Register. Therefore, the external event mask has no effect on the data read from this channel
when using the SPU channel access facility.

Programming Note:

To support SPE context save, restore, and debug; the following channels must be supported through this
interface:

• SPU Pending Event Register (supporting SPU Read Event Status Channel x‘0’)
• SPU Write Event Mask Channel (x‘1’)
• SPU Signal Notification 1 Channel (x‘3’)
• SPU Signal Notification 2 Channel (x‘4’)
• MFC Read Tag-Group Status Channel (x‘18’)
• MFC Read List Stall-and-Notify Tag Status Channel (x‘19’)
• MFC Read Atomic Command Status Channel (x‘1B’)
• SPU Read Inbound Mailbox Channel (x‘1D)

Channel data for channels x‘0’, x‘1’, x‘3’, x‘4’, x‘18’, x‘19’, x‘1B’, and x‘1D’ must be initialized to zero by privi-
leged software before a new context is started in an SPE.

Access Type Read/Write

Base Address Offset (BP_Base | P2(n)) + x‘04070’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Channel Data

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32:63 Channel Data

This field is used to initialize the data for the channel identified by the SPU Channel Index Register.
Access to this resource should be privileged. The number of bits implemented for this register is
channel specific. Only a subset of the implemented channels can be accessed through this register.
See the specific implementation documentation for more information.
Version 1.02
October 11, 2007

SPU Privileged Facilities

Page 243 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
16.3.3 SPU Channel Count Register (SPU_ChnlCnt)

Each channel has a data port and an associated depth or count (that is, the number of entries in the channel).
The channel count value is a record of the number of entries in the channel. The SPU Channel Count
Register is used to read or initialize the count associated with the channel selected by the SPU Channel
Index Register.

Access to this register should be privileged.

Channels are also defined as blocking or nonblocking. Blocking channels stall the execution of the SPU if the
channel is full (on writes) or empty (on reads); that is, the SPU will stall with a channel count of zero.

Implementation Note:

The following channels have counts that must be initialized or restored through this interface:

• SPU Pending Event Register (supporting SPU Read Event Status Channel x‘0’)
• SPU Write Event Mask Channel (x‘1’)
• SPU Signal Notification 1 Channel (x‘3’)
• SPU Signal Notification 2 Channel (x‘4’)
• MFC Read Tag-Group Status Channel (x‘18’)
• MFC Read List Stall-and-Notify Tag Status Channel (x‘19’)
• MFC Read Atomic Command Status Channel (x‘1B’)
• SPU Read Inbound Mailbox Channel (x‘1D)

Note: Channel counts for channels x‘0’, x‘3’, x‘4’, x‘18’, x‘19’, x‘1B’, and x‘1D’ must be initialized to zero.
Channel counts for channels x‘17’, x‘1C’, and x‘1E’ must be initialized to one. The channel count for the MFC
Command Opcode Channel (see page 117) must be initialized to an implementation-dependent maximum
value by privileged software before a new context is started.

Access Type Read/Write

Base Address Offset (BP_Base | P2(n)) + x‘04068’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Channel Count

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32:63 Channel Count

This field is used to modify the count parameter for the channel identified by the SPU Channel Index
Register. The number of bits implemented for this field is channel specific (see the channel descrip-
tions for the maximum value of the count). See the specific implementation documentation for more
information.
SPU Privileged Facilities

Page 244 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
16.4 SPU Configuration Register (SPU_Cfg)

The SPU Configuration Register is used to read or set the configuration of the SPU signal notification regis-
ters: SPU Signal Notification 1 Register (see page 106) and SPU Signal Notification 2 Register (see page
107) in the SPUs.

Each SPU signal notification register can be configured to either overwrite the current contents of the register
when written or to logically OR the data written with the current contents. The current contents are reset to
zero when read using an SPU read channel (rdch) instruction.

The mode of each SPU signal notification register must be initialized to overwrite at power-on reset (POR).

Access Type Read/Write

Base Address Offset (BP_Base | P2(n)) + x‘04078’; where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved S2 S1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:61 Reserved Reserved.

62 S2
Signal notification 2 mode.
0 Signal notification 2 mode is overwrite (POR default).
1 Signal notification 2 mode is logical OR.

63 S1
Signal notification 1 mode.
0 Signal notification 1 mode is overwrite (POR default).
1 Signal notification 1 mode is logical OR.
Version 1.02
October 11, 2007

SPU Privileged Facilities

Page 245 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
SPU Privileged Facilities

Page 246 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
17. SPE Context Save and Restore

Saving and restoring the context of a Synergistic Processor Element (SPE) can be very expensive in terms of
time and system resources. An SPE allocation scheme can be used that follows a “serially reusable device”
model. In this model, an SPE is assigned a task until it completes, and then another task is assigned in a
serial fashion. This model results in better utilization of SPEs. The serially reusable device model requires
less context to be saved and restored during a context switch.

When this model cannot be used, the hardware supports suspending a task on an SPE, fully saving its
context, fully restoring that context at a later time, and resuming the task. Although it is facilitated by hard-
ware, context save and restore is software intensive. A preemptive context switch facilitated by privileged
software is the most costly form of context save and restore because the context is not known and a worst
case save and restore of all context information must be performed. An application yielding mechanism can
be used, in which the application using the SPU determines the timing and the amount of context saved and
restored. This can provide significant cost savings in terms of the cycles and space that are used to save and
restore the SPE context. However, the application primarily drives the technique selected; the architecture
requires an implementation to support a full context save and restore of an SPE. Context Save and Context
Restore is implementation dependent. See the specific implementation documentation for details on the
required sequence for saving and restoring a context. Some operating environments can forgo restoring the
context of an SPE that has been stopped (especially when stopped on error conditions).

Note: Preemptive context switching of an SPU that interfaces directly with an I/O device should be specifi-
cally avoided because the physically mapped local storage is considered part of the context.

The context save and restore sequences are described in the specific implementation documentation.
Version 1.02
October 11, 2007

SPE Context Save and Restore

Page 247 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
SPE Context Save and Restore

Page 248 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
18. PPE Address Range Facility

The PowerPC Processor Element (PPE) address range facility provides a method to select a class ID for the
cache replacement management facility based on the effective address of PPE loads and stores and instruc-
tion fetches. For more information about the cache replacement management facility, see Section 19.1
Replacement Management Table Example beginning on page 255. A set of PPE address range registers is
provided in each PPE to implement this facility.

An implementation should provide a minimum of two sets of range registers for instruction fetches and two
sets of range registers for data fetches per logical PPE. PPE special purpose registers (SPRs) are provided
for these four range registers. The SPRs should be duplicated for each processor thread.

A PPE address range facility consists of the following registers:

• Range Start Register (see page 251)
• Range Mask Register (see page 252)
• Class ID Register (see page 253)

An address range is a naturally-aligned range that is a power of 2 in size and is between 4 KB and 4 GB,
inclusive. An address range is defined by two registers; the Range Start Register (RSR) and the Range Mask
Register (RMR). For each address range, there is an associated Class ID Register (CIDR) that specifies the
class ID. These address range registers are accessible by PPE move-to or move-from special-purpose
register instructions. Access to these registers is only allowed in privileged state.

Figure 18-1 illustrates how the address range registers are used to generate the class ID.

Figure 18-1. Generation of Class ID from the Address Range Registers

RMR

Data /

Equality

Operand/

and

cmp

(32-51)(32-51)

(0-51)

Power MSR

IR DR

Compare

and

V

Range Hit Class ID

xnor

classID_0

Inst

Range 1Range 2

Range n

or

classID_n

classID

RSR

and

CIDR

R(0-31)

Instruction
Address
Version 1.02
October 11, 2007

PPE Address Range Facility

Page 249 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
If all the following conditions are met, the particular address range defined by an RSR and RMR pair applies
to a given effective address (EA), and a “range hit” is said to have occurred. Then the class ID from in the
corresponding Class ID Register is used as an index into the RMT. For example:

• RSR[63] = ‘1’

• RSR[0:51] = EA[0:31] || (EA[32:51] & RMR[32:51])

• If the operation is a load or store, then

• RSR[62] = MSR[DR]

• Else (the operation is an instruction fetch)

• RSR[62] = MSR[IR]

If there is no “range hit” for a given effective address, the class ID has a value of 0. In effect, the RMR defines
the size of the range by selecting the bits of an effective address used to compare with the RSR.
The upper bits of an RSR contain the starting address of the range. The lower bits contain a relocation mode
(virtual or real) and a valid bit. The size of the range must be a power of two. The starting address of the
range must be a range-size boundary.

Note: All cache management instructions should be treated as loads or stores for calculating the class ID.

Programming Note:

To avoid confusion about the class ID value, software should ensure that the address ranges specified in the
PPE address range facility do not overlap (that is, more than one range has a simultaneous hit). If two
address ranges are hit by the same address, the resulting class ID will be a logical OR of the two values in the
CIDR.
PPE Address Range Facility

Page 250 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
18.1 Range Start Register (RSR)

The Range Start Register contains the starting address of a PPE address range. The upper bits of this
register contain the starting address of the range. The lower bits contain a relocation mode (real or virtual)
and a valid bit. The size of the range must be a power of two, and the starting address must be a range-size
boundary.

Access Type Read/Write

SPR Offset Implementation dependent

Starting Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Starting Address Reserved R V

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:51 Starting Address This field contains the upper 52 bits of the starting address for the range.

52:61 Reserved Set to zero.

62 R

Relocation mode.
Used to compare the Instruction Relocate (IR) or Data Relocate (DR) bit of the PPE Machine State
Register (MSR).
0 Address relocation through effective-to-virtual-address translation is off (real addressing

mode).
1 Address relocation through effective-to-virtual-address translation is on (virtual addressing

mode).

63 V
Range register valid.
0 Range register disabled.
1 Range register enabled.
Version 1.02
October 11, 2007

PPE Address Range Facility

Page 251 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
18.2 Range Mask Register (RMR)

The Range Mask Register defines the size of a PPE address range by selecting the bits of an operand
address used to compare with the Range Start Register.

Bits 32 - 51 of the operand or instruction address is ANDed with the 20-bit RMR. Bits 0 - 31 of the operand or
instruction address is then concatenated with the result of the AND and compared with the starting address in
the RSR to determine a range hit. The upper 32 bits are always compared.

Access Type Read/Write

SPR Offset Implementation dependent

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

20-Bit Address Mask Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to ‘1’. This reserved field is not set as described in Section 1.5 Reserved Fields and Registers
beginning on page 32.

32:51 20-Bit Address Mask Corresponds to effective address bits 32 - 51.

52:63 Reserved Set to zeros.
PPE Address Range Facility

Page 252 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
18.3 Class ID Register (CIDR)

The Class ID Register contains the RclassID to use when the address of the operand or instruction matches
a PPE address range.

Access Type Read/Write

SPR Offset Implementation dependent

Reserved RclassID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:23 Reserved Reserved.

24:31 RclassID The size of this field is implementation dependent. See the specific implementation documentation
for more information.
Version 1.02
October 11, 2007

PPE Address Range Facility

Page 253 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
PPE Address Range Facility

Page 254 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
19. Cache Replacement Management Facility

The Cell Broadband Engine Architecture (CBEA) provides a way to control cache replacement based on a
replacement class identifier (RClassID). The class ID is a parameter in the memory flow controller (MFC)
commands and is generated from the load and store address for PowerPC Processor Element (PPE) opera-
tions (see Section 18 on page 249). The class ID is used to generate an index to a table managed by privi-
leged software that is used to control the replacement policy.

A CBEA-compliant implementation should provide an RMT for each major cache structure. The format of the
replacement management table (RMT) is implementation dependent. An example of an RMT and the index
generation method is provided in the following sections. See the specific implementation documentation for
details on the support of the cache replacement management facility.

In this version of the CBEA, memory-mapped I/O (MMIO) register locations are provided for an L2 RMT and
an MFC translation lookaside buffer (TLB) RMT. PPE special purpose registers are provided for a PPE TLB
RMT.

19.1 Replacement Management Table Example

Privileged software controls cache replacement through an RMT. Each level of cache, including the TLBs that
support replacement management, must have an independent RMT.

The RMT consists of an implementation-dependent number of entries, which should contain Set-Enable bits,
a Valid bit, and other control information. Optionally, an implementation can also provide a Cache Bypass bit
and an Algorithm bit. The number of entries and the size of each entry in the RMT table is implementation
dependent. Table 19-1 depicts a typical RMT entry for an 8-way, set-associative cache. The RMT table is
located in the real address space of the system. The privileged software should map these RMT tables as
privileged pages.

The RMT defines which sets in the set-associative cache are to be used for the respective replacement
management class. If the Set Enable bit for the respective set is ‘1’, that set is used by that replacement class
in the RMT entry. If the Set Enable bit is not set, the associated set is not used for operations involving the
respective replacement management class.

Table 19-1. Typical RMT Entry for an 8-Way Set Associative Cache

S0 S1 S2 S3 S4 S5 S6 S7 Reserved a b v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:7 S(n) Cache set enable: n = {0 - 7}.

8:28 Reserved

29 a
The Algorithm bit specifies the replacement algorithm to be used for this class.
0 Least recently used (LRU)
1 Most recently used (MRU)

30 b The Bypass bit indicates that the operation should not be cached at this level (not valid for transla-
tion RMTs).

31 v The Valid bit indicates that the RMT entry contains valid information.
Version 1.02
October 11, 2007

Cache Replacement Management Facility

Page 255 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
One or more sets can be used for more than one replacement management class. Using replacement
management classes for streaming areas to prevent thrashing1 the cache is an example of how the cache
replacement management facility can be used.

Accessing an invalid RMT results in the default class of x‘0’ being used for the operation. If the default class is
also invalid, the class is treated as though all set enables were set.

Setting the Bypass bit indicates that the data should not be cached at a hierarchy level that corresponds to
this RMT. For data caches, the load or store should bypass the cache and be passed directly to the bus. It is
possible that the data for the operation already exists at this hierarchy level. In this case, the implementation
can source the data from the cache, provide the data through intervention, or cause the data to be invalidated
or pushed from this cache level. In any case, the load or store still follows the normal rules for coherency. A
table is generated to show all possible conditions for WIMG2 settings and cache states.

19.2 RMT Index Generation Example

The RMT is indexed for two purposes: to update the contents and to access the contents for management of
direct memory accesses (DMAs) and loads and stores.

To update the contents, software sets the RMT Index Register to point to the entry and stores the new data
for the RMT entry to the RMT Data Register. Accessing the RMT for management purposes is system depen-
dent. The CBEA places few requirements on the index. Devices that share a cache hierarchy must be able to
share the entries in the RMT (if the RMT index is the same for two or more devices), or must have an inde-
pendent area of the table (if the RMT index is unique).

When the cache hierarchy level is dedicated to a single device, the RMT index can be as simple as a range
check on the class ID. In the case of a shared cache, the class ID must be converted to an RMT index. Figure
19-1 RMT Index Generation on page 257 illustrates one method of generating the RMT from the class ID. In
this example, a pair of registers is used to map the class ID to an RMT index. The RMT Index Mask Register
is used to mask off the upper bits of the class ID. The RMT Index Off Register replaces the bits disabled by
the RMT Index Mask Register. Each device that shares this cache hierarchy level must have an independent
set of mask and offset registers. The shaded items are only required if more than one device shares the RMT.

Access to the RMT Index Mask and RMT Index Off Registers should be privileged. Privileged software must
set the RMT Index Mask Register with zeros in the upper bits and ones in the lower bits. The number of zeros
in the lower bits of the RMT Index Off Register must be equal to or greater than the number of ones in the
RMT Index Mask Register.

The RMT Index Register and the RMT Data Register are implementation dependent. A general format for
these registers is provided in Section 19.2.1 RMT Index Register on page 257 and Section 19.2.2 RMT Data
Register on page 258. See the specific implementation documentation for more information.

1. A cache is said to thrash when its miss rate is too high and it spends most of its time servicing misses.
2. The 4 bits in the page table, also called a page table entry, that control processor accesses to cache and to main storage.

“W” stands for write through, “I” for caching inhibited, “M” for memory coherence, and “G” for guarded storage.
Cache Replacement Management Facility

Page 256 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
19.2.1 RMT Index Register (RMT_Index)

This register holds the index of the RMT entry that is to be modified using the RMT Data Registers. The RMT
Index Register is an optional facility. An RMT Index Register must be provided for each facility that supports
the cache replacement policy.

Table A-3 SPE Privilege 1 Memory Map on page 298 lists the address offsets for the Synergistic Processor
Element (SPE) TLB RMTs. Table A-5 PPE Privilege 1 Memory Map on page 302 lists the address offsets for
the PPE L2 RMTs. Table C-1 PPE Special Purpose Register Map on page 309 lists the special-purpose
register (SPR) numbers for the PPE TLB RMTs. See the specific implementation documentation for more
information about the implementation of the RMT facility.

Figure 19-1. RMT Index Generation

Access Type Read/Write

SPR Offset Implementation dependent

Base Address Offset Implementation dependent

Implementation Dependent

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Index

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Implementation Dependent

32:63 Index The number of bits in this field is implementation dependent.

rmt_index_mask

and

classID

Error

and

or

rmt_index_off

or

RMT_Table_Index

RMT_index
Version 1.02
October 11, 2007

Cache Replacement Management Facility

Page 257 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
19.2.2 RMT Data Register (RMT_Data)

This register is used to access the entry in the RMT pointed to by the RMT Index Register. The RMT Data
Register is an optional facility. An RMT Data Register must be provided for each facility that supports the
cache replacement policy.

Table A-3 SPE Privilege 1 Memory Map on page 298 lists the address offsets for the SPE TLB RMTs. Table
A-5 PPE Privilege 1 Memory Map on page 302 lists the address offsets for the PPE L2 RMTs. Table C-1 PPE
Special Purpose Register Map on page 309 lists the address offsets for the PPE TLB RMTs. See the specific
implementation documentation for more information about the implementation of the RMT facility.

Access Type Read/Write

SPR Offset Implementation dependent

Base Address Offset Implementation dependent

Implementation Dependent

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Implementation Dependent

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 Implementation Dependent Implementation dependent
Cache Replacement Management Facility

Page 258 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
20. Resource Allocation Management

Resource allocation management (RAM) provides a mechanism to allocate portions of a resource’s time to a
specific resource allocation group (RAG). The number of RAGs is implementation dependent. The resources
that are managed are memory units and I/O interfaces (IOIFs). The definition of a memory unit is implemen-
tation dependent, and could, for example, be defined as a range of addresses or interleaved addresses. The
resource allocation groups are groups of one or more hardware units called requesters. These requesters are
physical or virtual units; they can initiate load or store requests, or they can initiate DMA read or write
accesses. The requesters are:

• PowerPC Processor Element (PPE) groups (PPE 0, PPE 1, memory management unit [MMU], L2 cache)
• Synergistic Processor Elements (SPEs)
• Virtual channels associated with the physical IOIFs

PPE groups and the SPEs are each in a specific RAG at an instant in time. However, they can be assigned to
various RAGs over time. Each RAG can be identified by a resource allocation ID (RAID). Software can
configure the RAID for a PPE group or an SPE with a memory-mapped register.

See the specific implementation documentation for more information.
Version 1.02
October 11, 2007

Resource Allocation Management

Page 259 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
Resource Allocation Management

Page 260 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
21. Interrupt Facilities

The Cell Broadband Engine Architecture (CBEA) provides facilities for the following activities:

• Routing interrupts and interrupt status information to a PowerPC Processor Element (PPE) or external
devices

• Prioritizing interrupts presented to a PPE
• Generating an interprocessor interrupt

In the CBEA, interrupts are a result of application actions, errors, or unusual conditions that arise in the
execution of PPE or synergistic processor unit (SPU) instructions, the execution of memory flow controller
(MFC) commands, or the occurrence of external events. Interrupts directed to a PPE allow the PPE to
change state as a result of the interrupt.

The CBEA defines additional interrupting conditions for the Synergistic Processor Elements (SPEs). Each
SPE has a set of interrupt registers for masking the interrupting conditions, holding the status of the inter-
rupting conditions, and routing the interrupt to a PPE or other device in the system.

PowerPC Architecture, Book III describes the interrupt definitions, interrupt ordering, interrupt synchroniza-
tion, and interrupt processing provided under the PowerPC Architecture. The PowerPC Architecture defines a
condition that can cause an interrupt as an exception. An interrupt is the change in processor state that is
caused by handling an exception.

When enabled, an SPE interrupt condition causes an interrupt to be routed to a PPE or other device which,
depending on the state of the PPE, can cause a change in the processor's state. Interrupts routed to a PPE
are presented as external interrupts.

Note: By masking the interrupting condition, privileged software can also support polling.

21.1 Interrupt Classification

In the PowerPC Architecture, interrupts are classified by cause. An interrupt that is directly caused by the
execution of an instruction is an “instruction caused” interrupt. All other system exceptions cause “system
caused” interrupts. The additional interrupting conditions defined by the CBEA are classified as system
caused interrupts. See Section 21.4 SPU and MFC External Interrupt Definitions on page 269 for the CBEA-
defined interrupt conditions and the CBEA-defined interrupt classes. The PowerPC interrupt classifications
should not be confused with the CBEA-defined interrupt classes.

System-caused interrupts are presented to a PPE as external interrupts. External interrupts are always
imprecise with respect to instruction processing in a PPE, and they cause an asynchronous change in state.
See PowerPC Architecture, Book III for a description of external interrupts.

External interrupts are maskable in a PPE, and a mask for each additional interrupt condition is supported in
the CBEA. See Section 21.6 MFC Interrupt Mask Registers beginning on page 276 for a description of
external interrupt masks. An implementation can provide additional implementation-dependent interrupt
status and mask registers. See the specific implementation documentation for more information.
Version 1.02
October 11, 2007

Interrupt Facilities

Page 261 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
21.2 Interrupt Presentation

The PPEs in a CBEA-compliant processor can generate and service interrupts and can handle interrupts
generated by SPUs, MFCs, and other external devices. Interrupts generated by an SPU instruction are
routed to a PPE or to other devices for processing. Software can generate an interrupt to a PPE. SPUs can
also generate and service interrupts that result from SPE events.

Figure 21-1 illustrates how the interrupts are presented inside a CBEA-compliant processor.

Interrupts generated by an SPU group are sent to an external interrupt controller or to an internal interrupt
controller (IIC) using either dedicated signals or an interrupt packet on the internal element interconnect bus
(EIB). External devices send interrupts to a CBEA-compliant processor using either dedicated signals or an
interrupt packet to the I/O interface (IOIF), which forwards the interrupt to the IIC through the EIB. An IIC
receives the interrupt packet and signals an external interrupt to the appropriate PPE. Software running on a
PPE or an SPU can cause an interrupt to be sent to a logical PPE by writing the corresponding Interrupt
Generation Port Register. As a result of the MMIO write, the IIC signals an interrupt to a PPE.

The IIC interrupt generation, routing, and presentation are described in Section 21.3 Internal Interrupt
Controller Registers beginning on page 263. SPU group registers related to external interrupt generation,
routing, and presentation are described in Section 21.4 SPU and MFC External Interrupt Definitions begin-
ning on page 269 through Section 21.8 Interrupt Routing Register beginning on page 283.

Figure 21-1. Interrupt Presentation

Interrupt Class

Data

SPU

Internal
Interrupt

Controller
(IIC)

PPE

Interrupt Signals

MMIOMMIO

Interrupt Class

Data

External
Interrupt
Controller

Interrupt Packet on

Interrupt Packet
Interrupt Packet on IOIF or EIB

Interrupt Destination
Interrupt Source

Interrupt Destination
Interrupt Source

Element Interconnect Bus

Interrupt Class
Interrupt Destination

Interrupt Source
Data

External
PPE

Interrupt Packet

Other

or

Signals or

Interrupt
External

Controller GroupMMIO

Interrupt Priority

Interrupt Priority

Interrupt Priority

PPE

Interrupt Signals

Internal/External
Devices

Coherent Processor
Bus

Interrupt Class

Data

Interrupt Destination
Interrupt Source

Interrupt Priority

CBEA-
Compliant
Processors
Interrupt Facilities

Page 262 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
21.3 Internal Interrupt Controller Registers

The IIC has an interrupt control block for each logical PPE (that is, for each thread in the physical processor).
These control blocks are mapped in the real address space, starting at an implementation-dependent offset
from the BP_Base. The control block’s starting address is defined as the BP_Base | IIC (p) + x‘400’ +
(t × x‘20’); where ‘p’ is the physical PPE, and ‘t’ is the PPU thread number for the corresponding PPE. (See
Table A-1 CBEA-Compliant Processor Memory Map on page 294 for more details.)

Table 21-1 shows the registers associated with each control block and their offsets from starting address of
the BP_Base.

21.3.1 Interrupt Pending Port Registers (INT_Pending_NonD and INT_Pending_D)

The Interrupt Pending Port Registers allow software to read the interrupt packet data and other information
about the highest priority interrupt pending for each logical PPE. There is one Interrupt Pending Port Register
for each logical PPE in a CBEA-compliant processor. The following description applies to interrupts for one
logical PPE and the Interrupt Pending Port Register, Interrupt Current Priority Level Register, and Interrupt
Generation Port Register for that logical PPE.

When an interrupt packet arrives at the IIC, if an interrupt of the same priority is not already queued in the IIC
for the PPE, the interrupt packet is retained in an interrupt pending queue. It is implementation dependent
whether more than one interrupt packet of the same priority is retained or whether subsequent interrupt
packets are retried. However, the IIC implementation must always be able to accept at least one interrupt per
priority value.

When the priority of the highest priority, valid interrupt in the interrupt pending queue is higher (lower numeric
value) than the priority in the Interrupt Current Priority Level Register, the external interrupt signal to a PPE is
activated. When the priority of the highest priority, valid interrupt in the interrupt pending queue is the same or
lower (equal or higher numeric value) than the priority in the Interrupt Current Priority Level Register, the
external interrupt signal to the PPE is deactivated.

Software should read the Interrupt Pending Port Register in the first level interrupt handler (FLIH) through an
MMIO load to obtain information about the interrupting condition. When software reads the Interrupt Pending
Port Register, the IIC returns the value of the highest priority, valid interrupt in the interrupt pending queue.
Software can read the Interrupt Pending Port Register with either of two addresses. One address is used for
destructive reads, and the other address is used for nondestructive reads. When the Interrupt Pending Port
Register is read destructively, the Interrupt Valid bit for the highest priority, valid interrupt in the interrupt

Table 21-1. Internal Interrupt Controller Memory Map

Offset
(Hexadecimal) Register Description Access Type

PowerPC Processor Unit (PPU) (Thread t) Interrupt Control Block, where 0 ≤ t ≤ number of PPU threads -1

 x‘000’ INT_Pending_NonD Interrupt Pending Port Registers; nondestructive read. Status and
data for pending interrupt. Read Only

 x‘008’ INT_Pending_D
Interrupt Pending Port Registers; destructive read.
Status and data for pending interrupt.

Read Only

x‘010’ INT_Generation
Interrupt Generation Port Register (see page 267).
Port for generation of an interprocessor interrupt.

Write Only

x‘018’ INT_CPL
Interrupt Current Priority Level Register (see page 268).
Only higher-priority interrupts cause an external interrupt.

Read/Write
Version 1.02
October 11, 2007

Interrupt Facilities

Page 263 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
pending queue is set to ‘0’. The priority value of this interrupt is copied into the Interrupt Current Priority Level
Register. Thus, a destructive read causes the external interrupt signal to a PPE to be deactivated because
the Interrupt Current Priority Level Register value represents the highest priority of the pending interrupts.
This external interrupt signal to a PPE remains deactivated until one of two events occurs. A higher priority
interrupt packet arrives at the IIC, or software lowers the priority in the Interrupt Current Priority Level
Register and a higher priority interrupt packet is or becomes pending. When the Interrupt Pending Port
Register is read nondestructively, the Valid bit in the interrupt pending queue is not changed, and the Inter-
rupt Current Priority Level Register is not changed.

When the Interrupt Pending Port Register is read (destructively or nondestructively) and there is a valid inter-
rupt in the interrupt pending queue, the data returned for the highest priority interrupt includes the following
information about the interrupt: validity, type, class, interrupt source (ISRC), priority and, optionally, the inter-
rupt packet data. If an implementation does not support the interrupt packet data, the interrupt packet data is
returned as zeros. If the Type bit is ‘0’, the interrupt packet originated from a memory flow controller (MFC),
external device, or external interrupt controller. If the Type bit is ‘1’, the interrupt packet originated from the
Interrupt Generation Port Register, and the class information and ISRC are read as zeros.

If software reads the interrupt pending port (destructively or nondestructively) when there is no valid pending
interrupt, the Valid bit returned will be zero. The value returned for the other fields is undefined. If software
reads the interrupt pending port when there is no valid pending interrupt, the Interrupt Current Priority Level
Register is unchanged.

If a nondestructive read of the interrupt pending port that returns a valid interrupt is followed by another read
of the interrupt pending port (destructive or nondestructive), the IIC returns the same data value unless
another interrupt of a higher priority has been received by the IIC. For example, there are two pending inter-
rupts of the same priority: one due to an external device sending an interrupt packet, and one due to a store
to the interrupt generation port (IGP). Once software reads the interrupt pending port nondestructively and
gets the interrupt pending port value for one of these interrupts, the same interrupt pending port value is
returned on the next interrupt pending port read, assuming no interrupt of a higher priority has been received
by the IIC.

When a valid interrupt of a specific priority exists in the interrupt pending queue, other pending interrupts of
the same priority and destination can be queued at other points in a CBEA-compliant processor or externally.
Reading the Interrupt Pending Port Register destructively resets the Interrupt Valid bit, allowing a subsequent
interrupt to move into the interrupt pending queue. The latency for a pending interrupt to move to the Interrupt
Pending Port Register is implementation dependent.

An implementation can support fewer bits than architected for interrupt packet data, interrupt class, ISRC,
and priority. If an implementation supports fewer priority bits than the number architected, the most-significant
bits of the Priority field should be supported to get a more consistent view of priority in an environment where
implementations or external devices support different numbers of bits. An implementation with N priority bits
divides the full set of 256 priority values into 2N ranges, so that priorities from implementations with all priority
bits that fall in the different 2N ranges still appear in their priority order with respect to each other.

If software synchronizes the MMIO load for a destructive read of the interrupt pending port, and then sets the
Machine State Register (MSR) External Interrupt Enable bit to ‘1’, no external interrupt will occur at the same
or a lower priority until software directly or indirectly modifies the Interrupt Current Priority Level Register.
Interrupt Facilities

Page 264 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
Implementation Note:

For the deactivation of the external interrupt property to function correctly, hardware must ensure that the
data read from the interrupt pending port is always returned before the external interrupt signal is deactivated.

The interrupt pending port acts as a window into the interrupt pending queue. Software always sees the
highest priority interrupt in this window at the time the interrupt pending port is read. This view of the interrupt
pending queue is independent of the Interrupt Current Priority Level Register (see page 268).

After a valid interrupt is pending in the interrupt pending queue, software can cause the external interrupt
signal to a PPE to be activated or deactivated by writing the Interrupt Current Priority Level Register. Soft-
ware can also mask interrupts from the IIC by writing the current priority level value to 0.

A flat interrupt priority scheme, in which all interrupts have the same priority, can be implemented as follows:
Set the same priority value for all classes in the Interrupt Routing Register. Configure the same priority value
for interrupts associated with external devices and any external interrupt controller. After the destructive read
of the Interrupt Pending Port Register, which software performs for each occurrence of a PPE external inter-
rupt, software must store a lower priority (higher numeric value) to the Interrupt Current Priority Level Register
to enable the presentation of the next interrupt packet.

Access Type Read Only

Base Address Offset BP_Base | IIC(p) + x‘400’ + (t × x‘20’) + x‘000’; Nondestructive read
BP_Base | IIC(p) + x‘400’ + (t × x‘20’) + x‘008’; Destructive read
(where p is a PPE number and t is a PPE (p) thread number)

Interrupt Packet Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V T Reserved Class ISRC Priority

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Interrupt Packet Data
The meaning of the data in this field is dependent on the interrupt source.
(This field is optional.)

32 V Interrupt valid.

33 T
Interrupt type.
0 Interrupt from MFC, external device, or external interrupt controller.
1 Interrupt from interrupt generation port.

34:39 Reserved Reserved.
Version 1.02
October 11, 2007

Interrupt Facilities

Page 265 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
40:47 Class

Interrupt class.
If the SPE is the source of the interrupt, the following values are defined for the field:
0 Error
1 Translation
2 Application
3 Reserved
If a PPE or the external interrupt controller is the source of the interrupt, the values defined for this
field are implementation dependent.
The first level interrupt handler uses the Class and ISRC fields to route the interrupt to the appropri-
ate second level interrupt handler.

48:55 ISRC

Interrupt source. Defines the unit in the processor sourcing the interrupt.
The values defined for this field are implementation dependent.
The first level interrupt handler uses the Class and ISRC fields to route the interrupt to the appropri-
ate second level interrupt handler.

56:63 Priority Interrupt priority.

Bits Field Name Description
Interrupt Facilities

Page 266 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
21.3.2 Interrupt Generation Port Register (INT_Generation)

The Interrupt Generation Port Register allows privileged software to generate an interrupt packet to a PPE.
There is one Interrupt Generation Port Register for each PPE in a CBEA-compliant processor. Software can
generate an interrupt packet to a PPE by storing to the PPE Interrupt Generation Port Register. This interrupt
packet does not need to be transmitted on the internal CBEA-compliant processor interconnect bus, because
the Interrupt Generation Port Register and the destination of the interrupt packet are both in the same IIC.
The least-significant byte written to this register contains the interrupt priority. When the interrupt packet is
read through the Interrupt Pending Port Register, the interrupt packet data, class information, and ISRC are
read as zeros.

If there are multiple stores to a PPE interrupt generation port with the same priority value, and thus multiple
pending interprocessor interrupts to a PPE with the same priority, interrupt packets of the same priority can
be merged and only a subset of these interrupts presented.

An implementation can support fewer bits than the architecture provides for priority. If an implementation
supports fewer priority bits than the number provided, the supported bits must be in the most-significant bit
positions of the Priority field.

Programming Note:

For interprocessor interrupts, software might need to use other means, such as a message queue in memory,
to convey information such as class, interrupt source, and the reason for the interrupt. Because a subset of
interrupts of the same priority to a PPE might be presented through the interrupt pending port, a message
queue in memory can also convey information about individual interrupts with the same priority.

Access Type Write Only

Base Address Offset BP_Base | IIC(p) + x‘400’ + (t × x‘20’) + x‘010’
(where p is a PPE number and t is a PPE (p) thread number)

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Priority

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:55 Reserved Reserved.

56:63 Priority Interrupt priority.
Version 1.02
October 11, 2007

Interrupt Facilities

Page 267 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
21.3.3 Interrupt Current Priority Level Register (INT_CPL)

There is one Interrupt Current Priority Level Register for each PPE in a CBEA-compliant processor. It holds
the priority level at which software is currently operating. The lower the numeric value of the Priority field, the
higher the priority level. Thus, the highest priority corresponds to a numeric value of 0. The priority level value
can be written explicitly by software storing to the Interrupt Current Priority Level Register, or indirectly by
software performing a destructive read of the interrupt pending port. See Section 21.3.1 Interrupt Pending
Port Registers on page 263 for details of interrupt pending port reads.

Software can mask interrupts at and below a specific priority level by storing the required priority value in the
Interrupt Current Priority Level Register. To synchronize the interrupt masking side effects of this store, soft-
ware must read the current priority level and synchronize the MMIO load for this read. After this synchroniza-
tion, an external interrupt will not occur unless its priority is higher than the priority value in the Interrupt
Current Priority Level Register.

Implementation Note:

For the deactivation of the external interrupt property to function correctly, hardware must ensure that the
data read from the Interrupt Current Priority Level Register is always returned before the external interrupt
signal is deactivated.

Access Type Read/Write

Base Address Offset BP_Base | IIC(p) + x‘400’ + (t × x‘20’) + x‘018’
(where p is a PPE number and t is a PPE (p) thread number)

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Priority

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:55 Reserved Reserved.

56:63 Priority Current priority level (0 is highest priority).
Interrupt Facilities

Page 268 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
21.4 SPU and MFC External Interrupt Definitions

Table 21-2 and Table 21-3 show the additional interrupt definitions provided by the CBEA. These interrupt
definitions share the same external interrupt vector defined in PowerPC Architecture, Book III. The interrupt
definitions listed in Table 21-2 and Table 21-3 are generated by the MFC and SPU within a CBEA-compliant
processor.

Table 21-2. SPU and MFC Interrupt Class Definitions

Class Meaning Description

0 Error This interrupt class is used for all error conditions relating to SPU group processing and direct
memory access (DMA) transfers.

1 Translation This interrupt class is used for all translation exceptions relating to a DMA transfer.

2 Application This interrupt class is used for all application interrupts.

3 Reserved This interrupt class is reserved for future use.

Table 21-3. SPU and MFC External Interrupt Definitions (Page 1 of 2)

Class Interrupt Type Description

0 DMA Alignment
Error Interrupt This interrupt occurs when software attempts to execute a DMA command that is not aligned.

0 Invalid DMA Command
Interrupt

This interrupt occurs when software attempts to execute a DMA command with an invalid
opcode, an MFC command not supported for the specific queue (for example, MFC atomic
commands in the MFC proxy command queue), or an invalid form of an MFC command.

0 SPU Error Interrupt

This interrupt occurs when the SPU has encountered one of the error conditions listed below:
• Illegal channel instruction detected.
• Invalid instruction detected.
• Other implementation-dependent errors. (See the documentation for a specific implemen-

tation.)
All these conditions should be individually maskable in the SPU.

1 MFC Data Segment
Error Interrupt This interrupt occurs when the DMA effective address cannot be translated to a virtual address.

1 MFC Data Storage
Error Interrupt This interrupt occurs when the DMA effective address cannot be translated to a real address.

1
MFC Local Storage
Address Compare Sus-
pend on get Interrupt

This interrupt occurs when MFC command queue operation is suspended (for both queues)
due to an MFC Local Storage Address Compare match. A match occurs when the local storage
address of an MFC DMA command matches the range specified in the MFC Local Storage
Address Compare Register when writing to local storage and the MFC_ACCR[Lg] bit is set to
'1'. See Section 15.6 on page 227 and Section 15.7 on page 229.

1
MFC Local Storage
Address Compare
Suspend on put Interrupt

This interrupt occurs when MFC command queue operation is suspended (for both queues)
due to an MFC Local Storage Address Compare match. A match occurs when the local storage
address of an MFC DMA command matches the range specified in the MFC Local Storage
Address Compare Register when reading from local storage and the MFC_ACCR[Lp] bit is set
to '1'. See Section 15.6 on page 227 and Section 15.7 on page 229

2 Mailbox Interrupt This interrupt occurs when an SPU writes to an SPU Write Outbound Interrupt Mailbox Channel
(see page 140).

2 SPU Stop-and-Signal
Instruction Trap This interrupt occurs when an SPU executes a stop-and-signal (stop) instruction.
Version 1.02
October 11, 2007

Interrupt Facilities

Page 269 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
21.5 SPU and MFC Interrupt Generation Process

The following three classes of interrupts are generated:

• Class 0 Interrupts
• Class 1 Interrupts (see page 272)
• Class 2 Interrupts (see page 274)

21.5.1 Class 0 Interrupts

As shown in Figure 21-2 on page 271, there are two SPU exceptions that cause the SE bit in the
MFC Class 0 Interrupt Status Register to be set to ‘1’:

• If the SPU attempts an illegal channel access, the C bit of the SPU Status Register is set to ‘1’ and the SE
bit is set to ‘1’.

• If the SPU attempts an invalid instruction, the I bit in SPU_Status is set to ‘1’ and the SE bit is set to ‘1’.

As shown in Figure 21-2 on page 271, there are also two MFC exceptions that cause MFC class 0 Interrupt
Status bits to be set:

• An invalid DMA command sets the C bit of the MFC Class 0 Interrupt Status Register to ‘1’.

• A DMA alignment error sets the A bit of the MFC Class 0 Interrupt Status Register to ‘1’.

Enabled bits in the MFC Class 0 Interrupt Status Register that are set to ‘1’ can cause a class 0 interrupt
packet to be sent as described in Section 21.8 Interrupt Routing Register beginning on page 283.

2
SPU Halt Instruction Trap
or Single Instruction Step
Complete

This interrupt occurs when an SPU executes a halt conditional instruction, and the condition is
met. It also occurs after completing an instruction in single step mode when the
SPU_PrivCntl[S] bit is set to '1' (see Section 16.1 SPU Privileged Control Register on
page 239).

2 Tag-Group Completion
Interrupt

This interrupt occurs when all commands for a selected tag group or tag groups are complete.
The interrupt generation is dependent on the Proxy Tag-Group Query Mask Register (see page
94) and the Proxy Tag-Group Query Type Register (see page 93).

2 SPU Inbound Mailbox
Threshold Interrupt

This interrupt occurs when the number of valid entries in the SPU inbound mailbox queue is
below an implementation-dependent value or threshold. Valid entries are removed from the
queue by an SPU application reading from the SPU Inbound Mailbox Channel. See Section 8.6
beginning on page 101 for more information about the mailbox facility.

Table 21-3. SPU and MFC External Interrupt Definitions (Page 2 of 2)

Class Interrupt Type Description
Interrupt Facilities

Page 270 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
Figure 21-2. MFC Class 0 Interrupt Generation Process

OR

Note: It is undefined whether a “set” is set dominant or not, unless this is explicitly stated.

Instruction
Detected

Or

SPU Invalid

Generate interrupt packet

Detected

DMA Alignment
Error

Int_Mask_class0[SE]

(Pulse)

SPU running

(Pulse)

PPE Store to

if no packet for MFC Class 0
has been generated since
the last PPE store to
MFC Class 0 Interrupt Status

SPU_Status[I]

Reg
(Set) (Reset)

Reg
(Set) (Reset)

Channel Access
Detected

SPU Illegal

(Pulse)

SPU_Status[C]

Reg
(Set) (Reset)

Int_Stat_class0[C]

And

Store Data[61]

Reg
(Set) (Reset)

Reg
(Set) (Reset)

Int_Stat_class0[SE] Int_Stat_class0[A]

And

Store Data[62] Store Data[63]

Int_Mask_class0[C] Int_Mask_class0[A]

And

Class 0 Interrupt
Status Register

And And And

SPU Status
Register

Class 0 Interrupt Status

SPU_Error Detected

Invalid
DMA Command

(Pulse)

(SPU_Status[R])

Class 0 Interrupt
Mask Register
Version 1.02
October 11, 2007

Interrupt Facilities

Page 271 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
21.5.2 Class 1 Interrupts

Only MFC events can cause class 1 interrupts to be generated, as shown in Figure 21-3 on page 273. There
are several defined MFC exceptions that set the bits of the MFC Data Storage Interrupt Status Register to ‘1’:

• If a bit in the MFC_DSISR is set to ‘1,’ the MF bit of the MFC Class 1 Interrupt Status Register (see page
281) is set to ‘1’. In this case, the software interrupt handler needs to clear the bits in the MFC_DSISR by
storing a ‘0’ in the respective bit position before attempting to reset bit 62 of the MFC Class 1 Interrupt
Status Register.

• If the MFC_DSISR bits are not cleared and the MF bit of the MFC Class 1 Interrupt Mask Register (see
page 277) is set to ‘1’, another interrupt packet is generated.

• If an MFC data-segment fault occurs, it sets the SF bit of the MFC Class 1 Interrupt Status Register to ‘1’.

Any enabled interrupts in the MFC Class 1 Interrupt Mask Register whose corresponding bit is set to ‘1’ in the
MFC Class 1 Interrupt Status Register can cause an interrupt packet to be sent as described in Section 21.8
Interrupt Routing Register beginning on page 283.
Interrupt Facilities

Page 272 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
Figure 21-3. MFC Class 1 Interrupt Generation Process

Note: It is undefined whether a “set” is set dominant or not, unless this is explicitly stated.

Or

MFC Exception [i]

Generate interrupt packet

Fault Detected

MFC
Data-Segment

Int_Mask_class1[LP]

PPE Store to

(Pulse)

(Pulse)

And

if no packet for MFC Class 1
has been generated since
the last PPE store to
MFC Class 1 Interrupt Status

MFC_DSISR[i]

Reg
(set) (reset)

Reg

(Set) (Reset)

Int_Stat_class1[MF]

Reg

(Set) (Reset)

(Pulse)

Reg

(Set) (Reset)

Detected

MFC LS Address
Compare for put

(Pulse)

And

Store Data[60]

Reg

(Set) (Reset)

Int_Stat_class1[LG]Int_Stat_class1[LP] Int_Stat_class1[SF]

And

Store Data[61] Store Data[62] Store Data[63]

Int_Mask_class1[LG] Int_Mask_class1MF] Int_Mask_class1[SF]

And And

Class 1 Interrupt
Status Register

And And And And

MFC Data Storage
Interrupt Status Register

store data[i]

PPE Store to

And

Or
...

Other
MFC_DSISR bits

Detected

MFC LS Address
Compare for get

(Level)

Class 1 Interrupt
Mask Register

MFC Data Storage
Interrupt Status Register

Class 1 Interrupt Status

Detected

(Pulse)
Version 1.02
October 11, 2007

Interrupt Facilities

Page 273 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
21.5.3 Class 2 Interrupts

Several SPU application actions cause class 2 interrupts to be generated. Figure 21-4 on page 275 illustrates
the following process:

• If the amount of data in the SPU inbound mailbox queue falls below an implementation-dependent
threshold, the B bit in the Class 2 Interrupt Status Register is set to '1'.

• If the Proxy Tag-Group Status Update condition is met, the T bit in the Class 2 Interrupt Status Register is
set to '1'.

• If the SPU executes a halt instruction or a single instruction step completes, the H bit in the SPU Status
Register is set to ‘1’, and the H bit in the Class 2 Interrupt Status Register is set to ‘1’.

• If the SPU executes a stop-and-signal instruction, the P bit in SPU_Status is set to ‘1’, and the S bit in the
MFC Class 2 Interrupt Status Register is set to ‘1’.

• If the SPU writes to the SPU Outbound Interrupt Mailbox Register (see page 237), the SPU Write Out-
bound Interrupt Mailbox Channel count is decremented. Whenever the SPU Write Outbound Interrupt
Mailbox Channel count is less than the maximum supported by the implementation, the M bit in the MFC
Class 2 Interrupt Status Register is set to ‘1’.

Any enabled interrupts in the MFC Class 2 Interrupt Mask Register whose corresponding bit is set to ‘1’ in the
MFC Class 2 Interrupt Status Register can cause an interrupt packet to be sent as described in Section 21.8
Interrupt Routing Register beginning on page 283.

The software interrupt handler can reset the class 2 MFC interrupt status bits without clearing SPU_Status.
The SPU_Status bits are automatically reset when the SPU restarts.
Interrupt Facilities

Page 274 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
Figure 21-4. MFC Class 2 Interrupt Generation Process

Note: It is undefined whether a “set” is set dominant or not, unless this is explicitly stated.

Instruction
Executed

Or

SPU Stop and Signal

Generate interrupt packet

Max

SPU Outbound

Mailbox

Int_Mask_class2[B]

PPE Store to

(Pulse)

SPU running

(Level)

if no packet for MFC class 2
has been generated since
the last PPE store to
MFC class 2 Interrupt Status

SPU_Status[P]

Reg
(Set) (Reset)

Reg
(Set) (Reset)

Int_Stat_class2[S]

Reg
(Set) (Reset)

Instruction
Executed

SPU Halt

(Pulse)

SPU_Status[H]

Reg
(Set) (Reset)

Int_Stat_class2[H]

Logical Or or AND of

Proxy Tag-Group Status
Update Condition

(Level)

Reg
(Set) (Reset)

 Threshold

SPU Inbound

(Level)

And

Store Data[59]

Reg
(Set) (Reset)

Reg
(Set) (Reset)

Int_Stat_class2[T]Int_Stat_class2[B] Int_Stat_class2[M]

And

Store Data[60]

And

Store Data[61] Store Data[62] Store Data[63]

Int_Mask_class2[T] Int_Mask_class2[H] Int_Mask_class2[S] Int_Mask_class2[M]

Tag-Group Status
Register Bits

And And

Class 2 Interrupt
Status Register

And And And And And
Class 2 Interrupt

Mask Register

SPU Status
Register

(SPU_Status[R])

Class 2 Interrupt Status

Interrupt

Channel Count <Channel Count <

Mailbox
Version 1.02
October 11, 2007

Interrupt Facilities

Page 275 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
21.6 MFC Interrupt Mask Registers

There are three interrupt mask registers in each MFC: one for each class of interrupt (error, translation, appli-
cation) as defined in Section 21.4 on page 269. The interrupt mask registers allow privileged software to
select which MFC and SPU events are allowed to generate an external interrupt to a PPE. Each bit in these
registers has a corresponding status bit.

21.6.1 Class 0 Interrupt Mask Register (INT_Mask_class0)

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0100’; where n is an SPE number.

“a” Implementation-Dependent Interrupts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved SE C A

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 “a” Implementation-
Dependent Interrupts

Mask for implementation-dependent interrupts.
0 Interrupt disabled.
1 Interrupt enabled.

32:60 Reserved Reserved.

61 SE
Enable for SPU error interrupt.
0 Interrupt disabled.
1 Interrupt enabled.

62 C
Enable for invalid DMA command interrupt.
0 Interrupt disabled.
1 Interrupt enabled.

63 A
Enable for MFC DMA alignment interrupt.
0 Interrupt disabled.
1 Interrupt enabled.
Interrupt Facilities

Page 276 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
21.6.2 Class 1 Interrupt Mask Register (INT_Mask_class1)

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0108’; where n is an SPE number.

“a” Implementation-Dependent Interrupts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved LP LG MF SF

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 “a” Implementation-
Dependent Interrupts

Mask for implementation-dependent interrupts.
0 Interrupt disabled.
1 Interrupt enabled.

32:59 Reserved Reserved.

60 LP
Enable for MFC local storage address compare suspend on put interrupt.
0 Interrupt disabled.
1 Interrupt enabled.

61 LG
Enable for MFC local storage address compare suspend on get interrupt.
0 Interrupt disabled.
1 Interrupt enabled.

62 MF
Enable for MFC data-storage interrupt (mapping fault).
0 Interrupt disabled.
1 Interrupt enabled.

63 SF
Enable for MFC data segment interrupt (segment fault).
0 Interrupt disabled.
1 Interrupt enabled.
Version 1.02
October 11, 2007

Interrupt Facilities

Page 277 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
21.6.3 Class 2 Interrupt Mask Register (INT_Mask_class2)

Note: Setting the threshold is implementation dependent.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0110’; where n is an SPE number.

“a” Implementation-Dependent Interrupts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved B T H S M

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 “a” Implementation-
Dependent Interrupts

Mask for implementation-dependent interrupts.
0 Interrupt disabled.
1 Interrupt enabled.

32:58 Reserved Reserved.

59 B
Enable for SPU mailbox threshold interrupt.
0 Interrupt disabled.
1 Interrupt enabled.

60 T
Enable for DMA tag group completion.
0 Interrupt disabled.
1 Interrupt enabled.

61 H
Enable for SPU halt instruction trap or single instruction step complete.
0 Interrupt disabled.
1 Interrupt enabled.

62 S
Enable for SPU stop-and-signal instruction trap.
0 Interrupt disabled.
1 Interrupt enabled.

63 M
Enable for mailbox interrupt.
0 Interrupt disabled.
1 Interrupt enabled.
Interrupt Facilities

Page 278 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
21.7 MFC Interrupt Status Registers

There are three interrupt status registers for each MFC: one for each class of interrupt (error, translation,
application) as defined in Section 21.4 on page 269. The interrupt status registers allow privileged software to
determine which MFC and SPU events caused the external interrupt to be presented to a PPE. See PowerPC
Architecture, Book III for a description of how external interrupts are processed by a PPE. Each bit in the
MFC Interrupt Status Registers has a corresponding mask in the MFC Interrupt Mask Registers defined in
Section 21.6 on page 276.

When an interrupt event occurs, the corresponding interrupt status bit is set. Reads of an Interrupt Status
Register are nondestructive. To reset an interrupt status bit, software must write a ‘1’ to the bit corresponding
to the interrupt status. Writing a ‘0’ to any bit location does not change the state of the interrupt status. If soft-
ware writes a ‘1’ to an interrupt status bit at the same time that hardware sets the bit due to an interrupt event,
the resulting value in the Interrupt Status Register is undefined if the condition that set the interrupt status bit
is a pulse. This is the case for MFC class 0 interrupt status bits 61 through 63, MFC class 1 interrupt status
bits 60, 61, and 63, and MFC class 2 interrupt status bits 61 and 62 (see Figure 21-2 MFC Class 0 Interrupt
Generation Process on page 271, Figure 21-3 MFC Class 1 Interrupt Generation Process on page 273, and
Figure 21-4 MFC Class 2 Interrupt Generation Process on page 275).

An interrupt packet is transmitted when the logical AND for the same class of the MFC Interrupt Status
Register and the MFC Interrupt Mask Register is nonzero and an interrupt packet has not been transmitted
since the last software write of the MFC Interrupt Status Register. Even though additional events can occur
for a given class, only one interrupt packet for that class is sent until software stores to the MFC Interrupt
Status Register for that class. After the store occurs, another interrupt packet is sent if the logical AND for the
same class of the MFC Interrupt Status Register and the MFC Interrupt Mask Register is nonzero.

Implementation Note:

By the preceding definition, an interrupt must be generated if an interrupt event sets an MFC Interrupt Status
Register bit to ‘1’ and the corresponding MFC Interrupt Mask Register bit is also ‘1’, provided an interrupt is
not already pending for the specific interrupt class. In addition, an interrupt must be generated if an MFC
Interrupt Status Register bit is ‘1’, and software sets the corresponding MFC Interrupt Mask Register bit to ‘1’,
provided an interrupt is not already pending for the specific interrupt class.
Version 1.02
October 11, 2007

Interrupt Facilities

Page 279 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
21.7.1 Class 0 Interrupt Status Register (INT_Stat_class0)

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0140’; where n is an SPE number.

“a” Implementation-Dependent Interrupts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved SE C A

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 “a” Implementation-
Dependent Interrupts

Status for implementation-dependent interrupts
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

32:60 Reserved Reserved

61 SE

Status for SPU error interrupt (see the specific implementation documentation for more details on
errors)
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

62 C
Status for invalid or illegal DMA command interrupt
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

63 A
Status for DMA alignment interrupt
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.
Interrupt Facilities

Page 280 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
21.7.2 Class 1 Interrupt Status Register (INT_Stat_class1)

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0148’; where n is an SPE number.

“a” Implementation-Dependent Interrupts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved LP LG MF SF

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 “a” Implementation-
Dependent Interrupts

Status for implementation-dependent interrupts
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

32:59 Reserved Reserved

60 LP
Status for MFC local storage address compare suspend on put interrupt
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

61 LG
Status for MFC local storage address compare suspend on get interrupt
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

62 MF
Status for MFC data storage interrupt (mapping fault)
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

63 SF
Status for MFC data segment interrupt (segment fault)
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.
Version 1.02
October 11, 2007

Interrupt Facilities

Page 281 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
21.7.3 Class 2 Interrupt Status Register (INT_Stat_class2)

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0150’; where n is an SPE number.

“a” Implementation-Dependent Interrupts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved B T H S M

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 “a” Implementation-
Dependent Interrupts

Status for implementation-dependent interrupts
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

32:58 Reserved Reserved

59 B
Status for SPU mailbox threshold interrupt
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

60 T
Status for SPU tag-group complete interrupt
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

61 H
Status for SPU halt instruction trap or single instruction step complete
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

62 S
Status for SPU stop-and-signal instruction trap
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.

63 M
Status for mailbox interrupt
0 Interrupt not pending for the corresponding interrupt type.
1 Interrupt pending for the corresponding interrupt type.
Interrupt Facilities

Page 282 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
21.8 Interrupt Routing Register (INT_Route)

The Interrupt Routing Register allows privileged software to select which PPE or which external interrupt
controller services to interrupt. The Interrupt Routing Register contains a set of routing information for each
class of interrupt.

For each class, the register contains an 8-bit priority and an 8-bit interrupt destination. The interrupt destina-
tion indicates which logical PPE or external interrupt controller will be sent interrupt packets for MFC inter-
rupts of the corresponding interrupt class.

The specific meaning of the Priority and Interrupt Destination fields is implementation dependent. See the
specific implementation documentation for more information.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0180’; where n is an SPE number.

Class 0 Priority Class 0 Interrupt Destination Class 1 Priority Class 1 Interrupt Destination

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Class 2 Priority Class 2 Interrupt Destination Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:7 Class 0 Priority Interrupt priority for class 0 interrupts. The value written to this field is used as the priority for all
class 0 interrupts from the associated SPE.

8:15 Class 0 Interrupt
Destination

Indicates which logical PPE or external interrupt controller is sent interrupt packets for MFC class 0
interrupts.

16:23 Class 1 Priority Interrupt priority for class 1 interrupts. The value written to this field is used as the priority for all
class 1 interrupts from the associated SPE.

24:31 Class 1 Interrupt
Destination

Indicates which logical PPE or external interrupt controller is sent interrupt packets for MFC class 1
interrupts.

32:39 Class 2 Priority Interrupt priority for class 2 interrupts. The value written to this field is used as the priority for all
class 2 interrupts from the associated SPE.

40:47 Class 2 Interrupt
Destination

Indicates which logical PPE or external interrupt controller is sent interrupt packets for MFC class 2
interrupts.

48:63 Reserved Reserved
Version 1.02
October 11, 2007

Interrupt Facilities

Page 283 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
Interrupt Facilities

Page 284 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
22. Power Management

The Cell Broadband Engine Architecture (CBEA) defines five major states for power management: Active,
Slow (n), Pause (n), State Retained and Isolated (SRI), and State Lost and Isolated (SLI). Typically, the more
aggressive the power management state, the more time is required to enter and exit the state (see
Table 22-1 to determine which states are more aggressive). These states apply to the various components of
a CBEA-compliant processor as well as the full processor. The intent is to allow each component within a
CBEA-compliant processor to be set to the same or different power-management states.

Multiple power-management states provide privileged software with the control necessary to manage the
power of a CBEA-compliant processor while meeting the real-time demands of the system. Implementation of
the various states, and the associated power savings, are implementation dependent. See the specific imple-
mentation documentation for more information.

Typically, privileged software controls the transition between the various states. In some cases, an implemen-
tation can allow events to alter the power-management state of a CBEA-compliant processor.

Table 22-1. Power Management States

Power Management State Power
Savings Description Notes

Active Less
aggressive

In active state, the performance of a component is not limited by power
management.

Slow (n)

In the slow (n) state, performance can be degraded for power savings. A
higher value of n indicates a more aggressive power savings, and poten-
tial for more performance degradation. Real-time performance can be lim-
ited. The functionality of the component is not altered.

1

Pause (n)

In the pause (n) state, the component is not guaranteed to make forward
progress. The component state is maintained as well as the system integ-
rity. A higher value of n indicates a more aggressive power savings, and
potential for more performance degradation.

1

State Retained and Isolated

In the SRI state, all access to the component is inhibited. The state
remaining on the component is retained. The component must be pre-
pared by privileged software or hardware to maintain system integrity. The
component does not make forward progress.

State Lost and Isolated More
aggressive

In the SLI state, the component is effectively removed from the system.
The state of the component is not retained, and the component will not
respond to a system event.

1. Where n in the slow and pause states denotes the degree of power savings.
Version 1.02
October 11, 2007

Power Management

Page 285 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
Power Management

Page 286 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
23. Version Control

The Cell Broadband Engine Architecture (CBEA) consists of several components, each of which can have
different version levels or revisions. To allow for this, the CBEA provides a version register for each compo-
nent and an overall version register called the CBEA-Compliant Processor Version Register.

23.1 CBEA-Compliant Processor Version Register (BP_VR)

The CBEA-Compliant Processor Version Register is a 32-bit read only register that contains values that iden-
tify the version and revision level of the CBEA-compliant processor. The contents of the CBEA-Compliant
Processor Version Register are only accessible using a PowerPC Processor Element (PPE) move from
special-purpose register (mfspr) instruction. Read access to the CBEA-Compliant Processor Version
Register is privileged. Write access is not provided. There is only one CBEA-Compliant Processor Version
Register per CBEA-compliant processor.

Version numbers are assigned by the CBEA process. Revision numbers are assigned by an implementation-
defined process.

Implementation Note:

Although the classification of differences between CBEA-compliant processors as “major” or “minor” is some-
what arbitrary, the following are examples of differences that generally should be considered “major:”

• Number and type of execution units
• Optional facilities, instructions, and commands supported
• Level of instruction and command support (hard-wired or emulated)
• Size, geometry, and management of caches, translation lookaside buffers (TLBs), and synergistic pro-

cessor unit (SPU) local storage

The following are examples of differences that generally should be considered “minor:”

• Remapping a processor to a new technology
• Redesigning a critical path to increase clock rate
• Fixing bugs

Access Type Read Only

PPE SPR Number x‘3FE’

Version Revision

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:15 Version
A 16-bit number that identifies the version of the processor. Different version numbers indicate
major differences between processors, such as which optional facilities and instructions are sup-
ported.

16:31 Revision
A 16-bit number that distinguishes between implementations of the version. Different revision num-
bers indicate minor differences between processors with the same version number, such as clock
rate and engineering change level.
Version 1.02
October 11, 2007

Version Control

Page 287 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
In general, any change to a CBEA-compliant processor should cause a new BP_VR value to be assigned.
Any change to a CBEA-compliant processor, even a change that is not expected to be apparent to software,
should cause a new revision number to be assigned in case the change has introduced an error that software
must circumvent.

23.2 PPE Processor Version Register (PVR)

PowerPC Architecture, Book III describes a processor version register, which contains a 32-bit value that
identifies the specific version (model) and revision level of the PPE portion of the CBEA.

There is one PVR for each PPE in a CBEA-compliant processor. The contents of the PPE Processor Version
Register are only accessible using a PPE move from special-purpose register (mfspr) instruction.

Version numbers are assigned by the PowerPC Architecture process. Revision numbers are assigned by an
implementation-defined process.

See PowerPC Architecture, Book III for a complete description of the PVR.
Version Control

Page 288 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
23.3 SPU Version Register (SPU_VR)

The SPU Version Register contains a 32-bit value that identifies the specific version (model) and revision
level of the SPU portion of the CBEA. The contents of this register are accessible from a PPE using a load
doubleword (ld) instruction. Read access to the SPU Version Register should be privileged. Write access is
not provided. Access to this register from the SPU is not provided. There is one SPU Version Register for
each SPU in a CBEA-compliant processor.

The SPU_VR distinguishes between SPUs that differ in attributes that can affect software. It contains two
fields. Version numbers are assigned by the SPU Architecture process. Revision numbers are assigned by
an implementation-defined process.

Access Type Read Only

Base Address Offset (BP_Base | P1(n)) + x‘0020’, where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Revision

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32:47 Version A 16-bit number that identifies the version of the SPU. Different version numbers indicate major dif-
ferences between SPUs, such as which optional facilities and instructions are supported.

48:63 Revision
A 16-bit number that distinguishes between implementations of the version. Different revision num-
bers indicate minor differences between SPUs with the same version number, such as clock rate
and engineering change level.
Version 1.02
October 11, 2007

Version Control

Page 289 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
23.4 MFC Version Register (MFC_VR)

The MFC Version Register contains a 32-bit value that identifies the version and revision level of the memory
flow controller (MFC) component of the CBEA. The contents of the MFC Version Register are accessible from
a PPE using a ld instruction. Read access to the MFC_VR should be privileged. Write access is not provided.
There is one MFC Version Register for each MFC in the CBEA-compliant processor.

The MFC_VR distinguishes between MFCs that differ in attributes that can affect software. It contains two
fields. Version numbers are assigned by the CBEA process. Revision numbers are assigned by an imple-
mentation-defined process.

Access Type Read Only

Base Address Offset (BP_Base | P1(n)) + x‘0018’, where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Revision

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32:47 Version A 16-bit number that identifies the version of the MFC. Different version numbers indicate major dif-
ferences between MFC units, such as which optional facilities and instructions are supported.

48:63 Revision
A 16-bit number that distinguishes between implementations of the version. Different revision num-
bers indicate minor differences between MFC units with the same version number, such as clock
rate and engineering change level.
Version Control

Page 290 of 358

 Version 1.02
October 11, 2007

Privileged Mode Environment

 Cell Broadband Engine Architecture
23.5 SPU Identification Register (SPU_ID)

The SPU Identification Register contains a 32-bit value that can be used to distinguish an SPU from other
SPUs in the system. The contents of this register are accessible from a PPE using an ld instruction. Read
access to the SPU Identification Register should be privileged. Write access, if provided, is implementation
dependent. (See the specific implementation documentation for more information.)

Access to this register from the SPU is not provided. There is one SPU Identification Register for each SPU in
the CBEA-compliant processor.

SPU Identification Register initialization is implementation dependent. See the specific implementation docu-
mentation for more information.

Access Type Read/Write

Base Address Offset (BP_Base | P1(n)) + x‘0010’, where n is an SPE number.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Processor ID Value

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 Reserved Set to zeros.

32:63 Processor ID Value Distinguishes the SPU from other SPUs in the system.
Version 1.02
October 11, 2007

Version Control

Page 291 of 358

Privileged Mode Environment

Cell Broadband Engine Architecture
Version Control

Page 292 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Appendix A. Memory Maps

This appendix contains the mapping of all registers defined by the Cell Broadband Engine Architecture
(CBEA) in the real address space. As shown in Table A-1 CBEA-Compliant Processor Memory Map on
page 294, the memory map for a single CBEA-compliant processor is divided into six sections:

• Synergistic Processor Element (SPE) Local Storage (LS), Problem State (PS), and Privilege 2 (P2) Area
• SPE Privilege 1 Area
• PowerPC Processor Element (PPE) Area
• Internal Interrupt Controller (IIC) Area
• Power Management and Debug (PMD) Area
• Implementation-Dependent Expansion Area (IDEA)

The size of each area is based on the number of units (PPEs, SPUs, and IICs) in the CBEA-compliant
processor.

The starting location for the memory map is defined in an implementation-dependent base address register
(BP_Base). The BP_Base is used to calculate the address for all registers. An implementation can place
address holes in the memory map (that is, areas where registers are not defined) to simplify decoding of the
registers. BP_Base for a CBEA-compliant processor is implementation dependent. See the specific imple-
mentation documentation to determine how the base registers are initialized.

Implementation Note:

A CBEA-compliant processor implementation must provide at least one base register for relocating the
internal registers. All base register (BP_Base) values must be initialized during the CBEA-compliant
processor initialization sequence. The base register can either be set using a program sequence or initialized
using a hardware method such as scan or JTAG.
Version 1.02
October 11, 2007

Memory Maps

Page 293 of 358

Cell Broadband Engine Architecture
Table A-1. CBEA-Compliant Processor Memory Map (Page 1 of 2)

Real Address
(Hexadecimal) Area Description

SPE Local Storage (LS(n)), Problem State (PS(n)), and Privilege 2 (P2(n)) Area; where 0 ≤ n ≤ (number of SPEs -1)1

• LS(0) = BP_Base:2 The starting address of the area.
• spe_area_size = (2 × LS_size) rounded up to a power of 2 boundary.

Local Storage Area for SPE(n); where LS(n) = n × spe_area_size

BP_Base | LS(n) Start of LS(n) area Start of the local storage area for SPE(n)

BP_Base | LS(n) + LS_Size - 1 End of LS(n) area End of the local storage area

Problem State Area for SPE(n); where PS(n) = LS(n) + (spe_area_size >> 1) 3

BP_Base | PS(n) Start of PS(n) area Start of the problem state area for SPE(n)

BP_Base | PS(n) + x‘1FFFF’ End of PS(n) area End of the problem state area

Privilege 2 Area for SPE(n); where P2(n) = PS(n) + x‘20000’

BP_Base | P2(n) Start of P2(n) area Start of the privilege 2 area for SPE(n)

BP_Base | P2(n) + x‘1FFFF’ End of P2(n) area End of the privilege 2 area

SPE Privilege 1 Area (P1(n)); where 0 ≤ n < number of SPEs 1

• P1(0) ≥ P2(max) + x‘20000’: The starting address of the area.
• P1(n) = P1(0) + (n × x‘2000’); where 0 ≤ n ≤ (number of SPEs - 1).

BP_Base | P1(n) Start of P1(n) area Start of the privilege 1 area for SPE(n)

BP_Base | P1(n) + x‘1FFF’ End of P1(n) area End of the privilege 1 area

Notes:

1. The value “n” ranges from zero to the number of SPEs minus 1 (0 ≤ n ≤ (number of SPEs - 1)). If the number of SPEs is not a
power of 2, an implementation can choose to increase the value of “n” to the next power of 2 boundary and reserve the extra
space. Doing so simplifies decoding the address ranges.

2. This table assumes that the base starts on a power of 2 boundary that is greater than or equal to the size of the memory map area.
3. The symbol >> indicates shift by one to the right.
4. The value “p” ranges from zero to the number of PPEs (not threads) minus 1 (0 ≤ p ≤ [number of PPEs - 1]). If the number of PPEs

is not a power of 2, an implementation can choose to increase the value of “p” to the next power of 2 boundary and reserve the
extra space. Doing so simplifies decoding the address ranges.

5. The value “t” ranges from zero to the number of PPU threads in the associated PPE minus 1 (0 ≤ t ≤ [number of PPU threads - 1]).
6. The memory map pad (MM_pad) is used to pad the CBEA-compliant processor memory-mapped area to at least a 64 KB bound-

ary.
Memory Maps

Page 294 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
PPE Area(p); where 0 ≤ p ≤ number of physical PPEs - 1 (PPEs; not PPE threads)4

• PPE(0) ≥ P1(max) + x‘2000’: the starting address of the area.
• PPE(p) = PPE(0) + (p × x‘1000’); where 0 ≤ n ≤ (number of PPEs - 1).

BP_Base | PPE(p) Start of PPE(p) area Start of the privilege 1 area for PPE(p)

BP_Base | PPE(p) + x‘FFF’ End of PPE(p) area End of the PPE(p) area

Internal Interrupt Controller Area(p); where 0 ≤ p ≤ number of physical PPEs - 1 (PPEs; not PPE threads)4

• IIC(0) ≥ PPE(max) + x‘1000’: the starting address of the area.
• IIC(p) = IIC(0) + (p × x‘1000’).

Note: If more than 16 threads per PPE are needed, additional IIC areas are added, and the threads are divided between the areas.

BP_Base | IIC(p) Start of IIC(p) implementa-
tion-dependent area Start of the implementation-dependent area for the IIC

BP_Base | IIC(p) + x‘3FF’ End of IIC(p) implementation-
dependent area End of the implementation-dependent area for the IIC

Internal Interrupt Controller Thread Control Block(t); where 0 ≤ t ≤ number of PPU threads - 15

• IIC_TCB(t) = IIC(p) + x‘400’ + (t × x‘20’)

BP_Base | IIC_TCB(t) Start of IIC_TCB(t) area
Start of the thread control block area for IIC_TCB(t) (see
Section 21.3 Internal Interrupt Controller Registers on
page 263)

BP_Base | IIC_TCB(t) + x‘1F’ End of IIC_TCB(t) area End of the thread control block area for IIC_TCB(t)

BP_Base | IIC(p) + x‘FFF’ End of IIC(p) area End of the internal interrupt controller area

Power Management and Debug Area
• PMD ≥ IIC(max) + x‘1000’: The starting address of the area.

BP_Base | PMD Start of PMD area
Start of the memory-mapped I/O (MMIO) area for power man-
agement and architected performance monitor and debug
features

BP_Base | PMD + x‘FFF’ End of PMD area End of the power management and architected performance
monitor and debug area

Implementation-Dependent Expansion Area
• IDEA ≥ PMD + x‘1000’: The starting address of the area.

BP_Base | IDEA Start of the IDEA area Start of the MMIO area for implementation-dependent fea-
tures defined in the specific implementation documentation

BP_Base | IDEA + MM_pad6 End of the IDEA area End of the MMIO area for implementation-dependent fea-
tures

Table A-1. CBEA-Compliant Processor Memory Map (Page 2 of 2)

Real Address
(Hexadecimal) Area Description

Notes:

1. The value “n” ranges from zero to the number of SPEs minus 1 (0 ≤ n ≤ (number of SPEs - 1)). If the number of SPEs is not a
power of 2, an implementation can choose to increase the value of “n” to the next power of 2 boundary and reserve the extra
space. Doing so simplifies decoding the address ranges.

2. This table assumes that the base starts on a power of 2 boundary that is greater than or equal to the size of the memory map area.
3. The symbol >> indicates shift by one to the right.
4. The value “p” ranges from zero to the number of PPEs (not threads) minus 1 (0 ≤ p ≤ [number of PPEs - 1]). If the number of PPEs

is not a power of 2, an implementation can choose to increase the value of “p” to the next power of 2 boundary and reserve the
extra space. Doing so simplifies decoding the address ranges.

5. The value “t” ranges from zero to the number of PPU threads in the associated PPE minus 1 (0 ≤ t ≤ [number of PPU threads - 1]).
6. The memory map pad (MM_pad) is used to pad the CBEA-compliant processor memory-mapped area to at least a 64 KB bound-

ary.
Version 1.02
October 11, 2007

Memory Maps

Page 295 of 358

Cell Broadband Engine Architecture
A.1 SPE Problem State Memory Map

Table A-2 shows how the SPU problem state registers are mapped into the real address space of the system.
Some registers are defined as byte and half-word widths, but all accesses to these registers are required to
be a minimum of 32 bits.

Table A-2. SPE Problem State Memory Map (Page 1 of 2)

Offset
(Hexadecimal) Register Description Access Type

Multisource Synchronization Area

x‘00000’ MFC_MSSync MFC Multisource Synchronization Register (see page 109) Read/Write

Memory Flow Controller (MFC) Proxy Command Parameter Area

x‘03000’ Reserved Reserved for future expansion. Reserved

x‘03004’ MFC_LSA MFC Local Storage Address Register (see page 85)1 Write Only

x‘03008’ MFC_EAH MFC Effective Address High Register (see page 86)1 Write Only

x‘0300C’ MFC_EAL MFC Effective Address Low Register (see page 87)1 Write Only

x‘03010’

MFC_Size MFC Transfer Size Register (see page 84)1, 2

(Upper 16 bits of register) Write Only

MFC_Tag MFC Command Tag Register (see page 83)1, 2
(Lower 16 bits of register) Write Only

x‘03014’

MFC_ClassID MFC Class ID Register (see page 82)1, 3
(Upper 16 bits of register for write) Write Only

MFC_Cmd MFC Command Opcode Register (see page 81) 1, 3
(Lower 16 bits of register for write) Write Only

MFC_CMDStatus MFC Command Status Register (see page 90) Read Only

MFC Proxy Status and Command Queue Control Area

x‘03020’:x‘030FF’ Reserved Reserved

x‘03104’ MFC_QStatus MFC Queue Status Register (see page 91) Read Only

x‘03204’ Prxy_QueryType Proxy Tag-Group Query Type Register (see page 93) Read/Write

x‘0321C’ Prxy_QueryMask Proxy Tag-Group Query Mask Register (see page 94) Read/Write

x‘0322C’ Prxy_TagStatus Proxy Tag-Group Status Register (see page 95) Read Only

x‘03330’:x‘03FFF’ Reserved Reserved

Synergistic Processor Unit (SPU) Control Area

x‘04004’ SPU_Out_Mbox SPU Outbound Mailbox Register (see page 102) Read Only

x‘0400C’ SPU_In_Mbox SPU Inbound Mailbox Register (see page 103)1 Write Only

x‘04014’ SPU_Mbox_Stat SPU Mailbox Status Register (see page 104) Read Only

x‘0401C’ SPU_RunCntl SPU Run Control Register (see page 96) Read/Write

x‘04024’ SPU_Status SPU Status Register (see page 97) Read Only

x‘04034’ SPU_NPC SPU Next Program Counter Register (see page 99) Read/Write

x‘04038’:x‘13FFF’ Reserved Reserved

1. Reading of these registers should be allowed for diagnostic purposes.
2. Both the MFC_Size and MFC_TAG registers must be written with a single 32-bit store instruction.
3. Both the MFC_ClassID and MFC_Cmd registers must be written with a single 32-bit store instruction.
Memory Maps

Page 296 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Signal-Notification Area

x‘1400C’ SPU_Sig_Notify_1 SPU Signal Notification 1 Register (see page 106) Read/Write

x‘14010’:x‘1BFFF’ Reserved Reserved

x‘1C00C’ SPU_Sig_Notify_2 SPU Signal Notification 2 Register (see page 107) Read/Write

x‘1C010’:x‘1FFFF’ Reserved Reserved

Table A-2. SPE Problem State Memory Map (Page 2 of 2)

Offset
(Hexadecimal) Register Description Access Type

1. Reading of these registers should be allowed for diagnostic purposes.
2. Both the MFC_Size and MFC_TAG registers must be written with a single 32-bit store instruction.
3. Both the MFC_ClassID and MFC_Cmd registers must be written with a single 32-bit store instruction.
Version 1.02
October 11, 2007

Memory Maps

Page 297 of 358

Cell Broadband Engine Architecture
A.2 SPE Privilege 1 Memory Map

Table A-3 lists all the CBEA-compliant SPE registers that allow only privilege 1 access.

Table A-3. SPE Privilege 1 Memory Map (Page 1 of 3)

Offset
(Hexadecimal) Register Description Access Type

Control and Configuration Area

x‘0000’ MFC_SR1 MFC State Register One (see page 221) Read/Write

x‘0008’ MFC_LPID MFC Logical Partition ID Register (see page 223) Read/Write

x‘0010’ SPU_ID SPU Identification Register (see page 291) Read/Write

x‘0018’ MFC_VR MFC Version Register (see page 290) Read Only

x‘0020’ SPU_VR SPU Version Register (see page 289) Read Only

x‘0028’:x‘00FF’ Reserved Reserved

Interrupt Area

x‘0100’ INT_Mask_class0 Class 0 Interrupt Mask Register (see page 276) Read/Write

x‘0108’ INT_Mask_class1 Class 1 Interrupt Mask Register (see page 277) Read/Write

x‘0110’ INT_Mask_class2 Class 2 Interrupt Mask Register (see page 278) Read/Write

x‘0118’:x‘013F’ Reserved Reserved Reserved

x‘0140’ INT_Stat_class0 Class 0 Interrupt Status Register (see page 280) Read/Write

x‘0148’ INT_Stat_class1 Class 1 Interrupt Status Register (see page 281) Read/Write

x‘0150’ INT_Stat_class2 Class 2 Interrupt Status Register (see page 282) Read/Write

x‘0158’:x‘017F’ Reserved Reserved Reserved

x‘0180’ INT_Route Interrupt Routing Register (see page 283) Read/Write

x‘0188’:x‘01FF’ Reserved Reserved Reserved

Atomic Unit Control Area

x‘0200’ MFC_Atomic_Flush
MFC Atomic Flush Register (see page 236)
This is an implementation-dependent register

Read/Write

x‘0208’:x‘03FF’ SPU_Cache_ImplRegs SPU cache hardware implementation-dependent registers. See the
specific implementation documentation.

1. An implementation should support reading of these registers for diagnostic purposes.
Memory Maps

Page 298 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Translation Lookaside Buffer (TLB) Management Registers

x‘0400’ MFC_SDR
MFC Storage Description Register (see page 224)
See also the PowerPC Architecture, Book III for a description of this
register.

Read/Write

x‘0408’:x‘04FF’ Reserved Reserved

x‘0500’ MFC_TLB_Index_Hint
TLB Index Hint Register (see page 209)
Index to the best TLB entry to update.

Read Only

x‘0508’ MFC_TLB_Index
TLB Index Register (see page 210)1

Index to the TLB entry to update with TLB Real Page Number Regis-
ter and TLB Virtual Page Number Register.

Write Only

x‘0510’ MFC_TLB_VPN
TLB Virtual Page Number Register (see page 211)
Access to the upper portion of the TLB entry.

Read/Write

x‘0518’ MFC_TLB_RPN
TLB Real Page Number Register (see page 212)
Access to the lower portion of the TLB entry.

Read/Write

x‘0520’:x‘053F’ Reserved Reserved

x‘0540’ MFC_TLB_Invalidate_
Entry

TLB Invalidate Entry Register (see page 214)1

Virtual page number of the TLB entry to invalidate.
Note: Not available for a PPE.

Write Only

x‘0548’ MFC_TLB_Invalidate_
All

TLB Invalidate All Register (see page 216)1

Invalidate all TLB entries (optional).
Note: Not available for a PPE.

Write Only

x'0550':'057F’ Reserved Reserved

Memory Management. (Implementation-dependent area. See the specific implementation documentation.)

x‘0580’:x‘05FF’ SPE_MMU_ImplRegs
SPE Memory Management Unit (MMU) Registers
See the specific implementation documentation for a description of
this register.

MFC Status and Control Area

x‘0600’ MFC_ACCR MFC Address Compare Control Register (see page 227) Read/Write

x‘0610’ MFC_DSISR MFC Data Storage Interrupt Status Register (see page 226) Read/Write

x‘0620’ MFC_DAR MFC Data Address Register (see page 225) Read/Write

x‘0628’:x‘06FF’ Reserved Reserved

Replacement Management Table Area (RMT) (Implementation-dependent area. See the specific implementation documentation).

x‘0700’ MFC_TLB_RMT_Index
RMT Index Register (see page 257)
Index to the replacement management tables.

Read/Write

x‘0710’ MFC_TLB_RMT_Data
RMT Data Register (see page 258)
Doubleword of RMT data pointed to by the RMT Index Register. Entry
contents are implementation dependent.

Read/Write

x‘0718’:x‘07FF’ SPE_RMT_ImplRegs SPE RMT hardware implementation-dependent registers

Table A-3. SPE Privilege 1 Memory Map (Page 2 of 3)

Offset
(Hexadecimal) Register Description Access Type

1. An implementation should support reading of these registers for diagnostic purposes.
Version 1.02
October 11, 2007

Memory Maps

Page 299 of 358

Cell Broadband Engine Architecture
MFC Command Data Storage Interrupt Area

x‘0800’ MFC_DSIPR
MFC Data Storage Interrupt Pointer Register (see page 232)
Contains a pointer to the command in the MFC command queue that
caused the error condition.

Read Only

x‘0808’ MFC_LSACR MFC Local Storage Address Compare Register (see page 229)
64-bit MFC Local Storage Address Compare Register Read/Write

x‘0810’ MFC_LSCRR MFC Local Storage Compare Result Register (see page 230)
64-bit MFC Local Storage Compare Results Register Read Only

x‘0818’:x‘08FF’ Reserved Reserved

Real-Mode Support Registers

x‘0900’ MFC_RMAB MFC Real-Mode Address Boundary Register (see page 218) Read/Write

x‘0908’:x‘0BFF’ Reserved Reserved

MFC Command Error Area

x‘0C00’ MFC_CER
MFC Command Error Register (see page 231)
Contains a pointer to the command in the direct memory access
(DMA) queue that caused the error condition.

Read Only

x‘0C08’:x‘0FFF’ Reserved Reserved

Implementation-Dependent Area. (See the specific implementation documentation for a detailed description of these registers).

x‘1000’:x‘1FFF’ PV1_ImplRegs Privilege 1 implementation-dependent registers

Table A-3. SPE Privilege 1 Memory Map (Page 3 of 3)

Offset
(Hexadecimal) Register Description Access Type

1. An implementation should support reading of these registers for diagnostic purposes.
Memory Maps

Page 300 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
A.3 SPE Privilege 2 Memory Map

Table A-4 lists all the CBEA-compliant registers that allow only privilege 2 access.

Table A-4. SPE Privilege 2 Memory Map (Page 1 of 2)

Offset
(Hexadecimal) Register Description Access Type

MFC Registers

x‘00000’:x‘010FF’ Reserved Reserved Reserved

Segment Lookaside Buffer Management Registers

x‘01100’ Reserved Reserved Reserved

x‘01108’ SLB_Index
SLB Index Register (see page 201)1

Index to the segment lookaside buffer (SLB) entry to be updated by
the SLB_VSID and SLB_ESID ports.

Write Only

x‘01110’ SLB_ESID
SLB Effective Segment ID Register (see page 202)
Access to the upper portion of an SLB entry.

Read/Write

x‘01118’ SLB_VSID
SLB Virtual Segment ID Register (see page 203)
Access to the lower portion of an SLB entry.

Read/Write

x‘01120’ SLB_Invalidate_Entry
SLB Invalidate Entry Register (see page 205)1

Effective segment ID (ESID) of the SLB entry to invalidate.
Write Only

x‘01128’ SLB_Invalidate_All
SLB Invalidate All Register (see page 206)1
Invalidate all SLB entries.

Write Only

x‘01130’:x‘01FFF’ Reserved Reserved Reserved

Context Save-and-Restore Area (Implementation-Dependent Area. See the specific implementation documentation.)

x‘02000’:x‘02FFF’ MFC_CSR_ImplRegs MFC Context Save and Restore registers

MFC Control

x‘03000’ MFC_CNTL MFC Control Register (see page 233) Read/Write

x‘03008’:x‘03FFFF’ MFC_Cntl1_ImplRegs Implementation-dependent control registers. See the specific imple-
mentation documentation.

Interrupt Mailbox

x‘04000’ SPU_Out_Intr_Mbox
SPU Outbound Interrupt Mailbox Register (see page 237)
SPU writes; PPE reads.

Read Only

SPU Control

x‘04040’ SPU_PrivCntl SPU Privileged Control Register (see page 239) Read/Write

x‘04058’ SPU_LSLR SPU Local Storage Limit Register (see page 241) Read/Write

x‘04060’ SPU_ChnlIndex

SPU Channel Index Register (see page 242)
This register selects which SPU channel in the specified SPU(n) is
accessed using the SPU Channel Count Register or SPU Channel
Data Register.

Read/Write

x‘04068’ SPU_ChnlCnt
SPU Channel Count Register (see page 244)
This register reads or initializes the SPU Channel Count Register
selected by the SPU Channel Index Register.

Read/Write

1. An implementation should support reading of these registers for diagnostic purposes.
Version 1.02
October 11, 2007

Memory Maps

Page 301 of 358

Cell Broadband Engine Architecture
A.4 PPE Privilege 1 Memory Map

Table A-5 lists all the CBEA-compliant PPE registers that require privilege 1 access.

x‘04070’ SPU_ChnlData
SPU Channel Data Register (see page 243)
This register reads or initializes the SPU channel data selected by the
SPU Channel Index Register.

Read/Write

x‘04078’ SPU_Cfg
SPU Configuration Register (see page 245)
This register reads or sets the configuration of the SPU Signal-Notifi-
cation Registers in the specified SPU(n).

Read/Write

x‘04080’:x‘04FFF’ Reserved Reserved

Implementation-Dependent Area. (See the specific implementation documentation for a detailed description of these registers.)

x‘05000’:x‘0FFFF’ PV2_ImplRegs Privilege 2 implementation-dependent registers

Reserved Area

x‘10000’:x‘1FFFF’ Reserved Reserved

Table A-5. PPE Privilege 1 Memory Map

Offset
(Hexadecimal) Register Description Access Type

RMT Area (Implementation-Dependent Area. See the specific implementation documentation.)

x‘000’:x‘2FF’ Reserved Reserved

x‘300’ L2_RMT_Index
RMT Index Register (see page 257).
Index to the replacement-management table.

Read/Write

x‘310’ L2_RMT_Data
RMT Data Register (see page 258).
Doubleword of RMT data pointed to by the RMT Index Register. Entry
contents are implementation dependent.

Read/Write

x‘318’:x‘7FF’ Reserved Reserved

Implementation-Dependent Area (See the specific implementation documentation for a detailed description of these registers)

x‘800’:x‘FFF’ PUPV_ImplRegs Implementation-dependent PPE privileged-state registers.

Table A-4. SPE Privilege 2 Memory Map (Page 2 of 2)

Offset
(Hexadecimal) Register Description Access Type

1. An implementation should support reading of these registers for diagnostic purposes.
Memory Maps

Page 302 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
A.5 Internal Interrupt Controller Memory Map

The IIC has an interrupt control block for each physical and logical PPE (that is, for each thread in the phys-
ical processor). These control blocks are mapped in the real address space, starting at an implementation-
dependent offset from the BP_Base. The control block's starting address is defined as the BP_Base | IIC(p) +
x‘400’ + (t × x‘20’); where 'p' is the physical PPE and 't' is the PPU thread number for the corresponding PPE.

(See Table A-1 CBEA-Compliant Processor Memory Map on page 294 for more details.)

Table A-6 shows the registers associated with each control block and their offsets from starting address of
the BP_Base.

Table A-6. Internal Interrupt Controller Memory Map

Offset
(Hexadecimal) Register Description Access Type

PowerPC Processor Unit (PPU) (Thread t) Interrupt Control Block where 0 ≤ t ≤ number of PPU threads -1

 x‘000’ INT_Pending_NonD
Interrupt Pending Port Registers (see page 263), nondestructive
read.
Status and data for pending interrupt.

Read Only

 x‘008’ INT_Pending_D
Interrupt Pending Port Registers (see page 263), destructive read.
Status and data for pending interrupt.

Read Only

x‘010’ INT_Generation
Interrupt Generation Port Register (see page 267).
Port for the generation of an interprocessor interrupt (IPI).

Write Only

x‘018’ INT_CPL
Interrupt Current Priority Level Register (see page 268).
Only higher-priority interrupts cause an external interrupt.

Read/Write
Version 1.02
October 11, 2007

Memory Maps

Page 303 of 358

Cell Broadband Engine Architecture
Memory Maps

Page 304 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Appendix B. SPU Channel Map

This appendix contains the mapping of all channels defined by the Cell Broadband Engine Architecture
(CBEA) in the real address space. The channel map for a single SPU in a CBEA-compliant processor is
divided into several sections:

• Synergistic Processor Unit (SPU) Event Channels
• SPU Signal Notification Channels
• SPU Decrementer Channels
• SPU Multisource Synchronization Channel
• Mask Read Channels
• SPU State Management Channels
• Memory Flow Controller (MFC) Command Parameter Channels
• MFC Tag Status Channels
• SPU Mailbox Channels

Note: No reserved channels can be used for implementation-dependent functions.

Table B-1. SPU Channel Map (Page 1 of 3)

Channel
Number

(Hexadecimal)
Channel Name Description Access Type

SPU Event Channels

x‘0’ SPU_RdEventStat
SPU Read Event Status Channel (see page 153).
Read event status (with mask applied).

Read blocking

x‘1’ SPU_WrEventMask
SPU Write Event Mask Channel (see page 157).
Write event-status mask.

Write

x‘2’ SPU_WrEventAck
SPU Write Event Acknowledgment Channel (see page 161).
Write end-of-event processing.

Write

SPU Signal Notification Channels

x‘3’ SPU_RdSigNotify1 SPU Signal Notification 1 Channel (see page 143).
Read blocking

x‘4’ SPU_RdSigNotify2 SPU Signal Notification 2 Channel (see page 144).
Read blocking

x‘5’ Channel 5 Reserved

x‘6’ Channel 6 Reserved

SPU Decrementer Channels

x‘7’ SPU_WrDec SPU Write Decrementer Channel (see page 145). Write

x‘8’ SPU_RdDec SPU Read Decrementer Channel (see page 146). Read

MFC Multisource Synchronization Channels

x‘9’ MFC_WrMSSyncReq MFC Write Multisource Synchronization Request Channel (see
page 149). Write blocking

SPU Reserved Channel

x‘A’ Channel 10 Reserved

 Mask Read Channels

x‘B’ SPU_RdEventMask SPU Read Event Mask Channel (see page 159). Read
Version 1.02
October 11, 2007

SPU Channel Map

Page 305 of 358

Cell Broadband Engine Architecture
x‘C’ MFC_RdTagMask MFC Read Tag-Group Query Mask Channel (see page 131). Read

SPU State Management Channels

x‘D’ SPU_RdMachStat SPU Read Machine Status Channel (see page 147). Read

x‘E’ SPU_WrSRR0 SPU Write State Save-and-Restore Channel (see page 148). Write

x‘F’ SPU_RdSRR0 SPU Read State Save-and-Restore Channel (see page 148). Read

MFC SPU Command Parameter Channels

x‘10’ MFC_LSA
MFC Local Storage Address Channel (see page 121).
Write local storage address command parameter.

Write

x‘11’ MFC_EAH
MFC Effective Address High Channel (see page 124).
Write high-order MFC effective-address command parameter.

Write

x‘12’ MFC_EAL
MFC Effective Address Low or List Address Channel (see page
122).
Write low-order MFC effective-address command parameter.

Write

x‘13’ MFC_Size
MFC Transfer Size or List Size Channel (see page 120).
Write MFC transfer-size command parameter.

Write

x‘14’ MFC_TagID
MFC Command Tag Identification Channel (see page 119).
Write Tag identifier command parameter.

Write

x‘15’
MFC_Cmd
MFC_ClassID

MFC Command Opcode Channel (see page 117).
Write and enqueue MFC command with associated class ID.

Write blocking
MFC Class ID Channel (see page 118).
Write and enqueue MFC command with associated command
opcode.

 MFC Tag Status Channels

x‘16’ MFC_WrTagMask
MFC Write Tag-Group Query Mask Channel (see page 129).
Write tag mask.

Write

x‘17’ MFC_WrTagUpdate
MFC Write Tag Status Update Request Channel (see page 132).
Write request for conditional or unconditional tag-status update.

Write blocking

x‘18’ MFC_RdTagStat
MFC Read Tag-Group Status Channel (see page 133).
Read tag status (with mask applied).

Read blocking

x‘19’ MFC_RdListStallStat
MFC Read List Stall-and-Notify Tag Status Channel (see page
135).
Read MFC list stall-and-notify status.

Read blocking

x‘1A’ MFC_WrListStallAck
MFC Write List Stall-and-Notify Tag Acknowledgment Channel
(see page 136).
Write MFC list stall-and-notify acknowledgment.

Write

x‘1B’ MFC_RdAtomicStat
MFC Read Atomic Command Status Channel (see page 137).
Read atomic command status.

Read blocking

SPU Mailboxes

x‘1C’ SPU_WrOutMbox
SPU Write Outbound Mailbox Channel (see page 139).
Write outbound SPU mailbox contents.

Write blocking

Table B-1. SPU Channel Map (Page 2 of 3)

Channel
Number

(Hexadecimal)
Channel Name Description Access Type
SPU Channel Map

Page 306 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
x‘1D’ SPU_RdInMbox
SPU Read Inbound Mailbox Channel (see page 141).
Read inbound SPU mailbox contents.

Read blocking

x‘1E’ SPU_WrOutIntrMbox
SPU Write Outbound Interrupt Mailbox Channel (see page 140).
Write SPU outbound interrupt mailbox contents.

Write blocking

x‘1F’:x‘3F’ Channel 31—Channel 63 Reserved

Table B-1. SPU Channel Map (Page 3 of 3)

Channel
Number

(Hexadecimal)
Channel Name Description Access Type
Version 1.02
October 11, 2007

SPU Channel Map

Page 307 of 358

Cell Broadband Engine Architecture
SPU Channel Map

Page 308 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Appendix C. CBEA-Specific PPE Special Purpose Registers

Table C-1 lists the PowerPC Processor Element (PPE) special-purpose registers (SPRs) required by the Cell
Broadband Engine Architecture (CBEA). These registers are accessed using the move to special-purpose
register (mtspr) instruction and move from special-purpose register (mfspr) PowerPC instruction.

Note: This is not a complete list of SPRs. There can be additional SPRs for specific implementations. See
Book III of the PowerPC Architecture or the specific implementation documentation for a complete list of
SPRs.

Table C-1. PPE Special Purpose Register Map (Page 1 of 2)

SPR Number Register Description Access Type

Version Register

x‘3FE’ BP_VR CBEA-Compliant Processor Version Register (see page 287). Read Only

Replacement-Management Table Area (RMT) (Implementation-dependent area: See the specific implementation
documentation for more information)

x‘3B6’ PPE_TLB_RMT_Index
RMT Index Register (see page 257).
Index of the RMTs.

Read/Write

x‘3B7’ PPE_TLB_RMT_Data
RMT Data Register (see page 258).
Doubleword of RMT data pointed to by the RMT Index Register. Entry
contents are implementation dependent.

Read/Write

Instruction Range SPRs

x‘3D0’ IRSR0 Instruction Range-Start Register 0 (duplicated per thread). Read/Write

x‘3D1’ IRMR0 Instruction Range-Mask Register 0 (duplicated per thread). Read/Write

x‘3D2’ ICIDR0 Instruction Class ID Register 0 (duplicated per thread). Read/Write

x‘3D3’ IRSR1 Instruction Range-Start Register 1 (duplicated per thread). Read/Write

x‘3D4’ IRMR1 Instruction Range-Mask Register 1 (duplicated per thread). Read/Write

x‘3D5’ ICIDR1 Instruction Class ID Register 1 (duplicated per thread). Read/Write

Data Range SPRs

x‘3B8’ DRSR0 Data Range-Start Register 0 (duplicated per thread). Read/Write

x‘3B9’ DRMR0 Data Range-Mask Register 0 (duplicated per thread). Read/Write

x‘3BA’ DCIDR0 Data Class ID Register 0 (duplicated per thread). Read/Write

x‘3BB’ DRSR1 Data Range-Start Register 1 (duplicated per thread). Read/Write

x‘3BC’ DRMR1 Data Range-Mask Register 1 (duplicated per thread). Read/Write

x‘3BD’ DCIDR1 Data Class ID Register 1 (duplicated per thread). Read/Write

1. Reading of these registers should be allowed for diagnostic purposes.
Version 1.02
October 11, 2007

CBEA-Specific PPE Special Purpose Registers

Page 309 of 358

Cell Broadband Engine Architecture
Translation Lookaside Buffer (TLB) Management SPRs

x‘3B2’ PPE_TLB_Index_Hint
TLB Index Hint Register (see page 209).
Index of best TLB entry to update.

Read Only

x‘3B3’ PPE_TLB_Index
TLB Index Register (see page 210).
Index of TLB entry to update with TLB Real Page Number Register
and TLB Virtual Page Number Register.1

Write Only

x‘3B4’ PPE_TLB_VPN
TLB Virtual Page Number Register (see page 211).
Access to upper portion of TLB entry.

Read/Write

x‘3B5’ PPE_TLB_RPN
TLB Real Page Number Register (see page 212).
Access to lower portion of TLB entry.

Read/Write

Table C-1. PPE Special Purpose Register Map (Page 2 of 2)

SPR Number Register Description Access Type

1. Reading of these registers should be allowed for diagnostic purposes.
CBEA-Specific PPE Special Purpose Registers

Page 310 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Appendix D. Defined Commands

This appendix contains the tables of defined commands from Section 7 MFC Commands beginning on page
55. These are the same tables that are shown in that section.

Each of these commands can contain one or more of the parameters listed in Table D-1 Parameter
Mnemonics.

Defined commands fall into one of three categories:

• Data transfer commands are shown in Table D-2 Data Transfer or MFC DMA Commands on page 312.

The data transfer commands are further divided into subcategories which define the direction of the data
movement (that is, to or from local storage, or get and put). An application can place the data transfer
commands listed in Table D-2 into the command queue. Unless otherwise noted, these commands can
be executed out of order.

• SL1 cache-management commands are shown in Table D-3 SL1 Storage Control Commands on
page 313.

• Synchronization commands are shown inTable D-4 MFC Synchronization Commands on page 314.

Note: Embedded fencing and synchronization commands must be used to ensure proper ordering when
ordering is required.

Table D-1 lists the parameter mnemonics.

Table D-1. Parameter Mnemonics

Parameter Parameter Name Register Name See
Note

CL MFC Class ID MFC_ClassID

TG MFC Command Tag Identification MFC_Tag

TS MFC Transfer Size MFC_Size 1

LSZ MFC List Size MFC_Size 1

LSA MFC Local Storage Address MFC_LSA

EAH MFC Effective Address High MFC_EAH 4

EAL MFC Effective Address Low MFC_EAL 2

LA MFC List Local Storage Address MFC_EAL 2

LTS List Element Transfer Size 3

LEAL List Element Effective Address Low 3

1. TS and LSZ share the same register offset. The meaning of the contents depends on the command modifier of the MFC opcode.
2. EAL and LA share the same register offset. The meaning of the contents depends on the command modifier of the MFC opcode.
3. No associated registers. These parameters are located in local storage and are referenced by the list address (LA) parameter.
4. This parameter is optional.
Version 1.02
October 11, 2007

Defined Commands

Page 311 of 358

Cell Broadband Engine Architecture
Table D-2 shows the data transfer, or direct memory access (DMA) commands available in the Cell Broad-
band Engine Architecture (CBEA).

Table D-2. Data Transfer or MFC DMA Commands (Page 1 of 2)

Mnemonic Opcode Support
(Proxy/Channel) Description

Put Commands

put x‘0020’ Proxy/Channel Moves data from local storage to an effective address within the main storage
domain.

puts x‘0028’ Proxy Moves data from local storage to an effective address within the main storage
domain. Starts the SPU after the DMA operation completes.

putr x‘0030’ Proxy/Channel Same as put with a PPE L2 cache scarf hint (used to send results to a PPE).1

putf x‘0022’ Proxy/Channel
Moves data from local storage to an effective address within the main storage
domain with fence. This command is locally ordered with respect to all previously
issued commands within the same tag group and command queue.

putb x‘0021’ Proxy/Channel

Moves data from local storage to an effective address within the main storage
domain with barrier. This command and all subsequent commands with the same
tag ID as this command are locally ordered with respect to all previously issued com-
mands within the same tag group and command queue.

putfs x‘002A’ Proxy

Moves data from local storage to an effective address within the main storage
domain with fence. This command is locally ordered with respect to all previously
issued commands within the same tag group and command queue. Starts the SPU
after the DMA operation completes.

putbs x‘0029’ Proxy

Moves data from local storage to an effective address within the main storage
domain with barrier. This command and all subsequent commands with the same
tag ID as this command are locally ordered with respect to all previously issued com-
mands within the same tag group and command queue. Starts the SPU after the
DMA operation completes.

putrf x‘0032’ Proxy/Channel Same as putf with a PPE L2 cache scarf hint used to send results to a PPE.1

putrb x‘0031’ Proxy/Channel Same as putb with a PPE L2 cache scarf hint used to send results to a PPE. 1

putl x‘0024’ Channel Moves data from local storage to an effective address within the main storage
domain using an MFC list.

putrl x‘0034’ Channel Same as putl with a PPE L2 cache scarf hint used to send results to a PPE.1

putlf x‘0026’ Channel
Moves data from local storage to an effective address within the main storage
domain using an MFC list with fence. This command is locally ordered with respect
to all previously issued commands within the same tag group and command queue.

putlb x‘0025’ Channel

Moves data from local storage to an effective address within the main storage
domain using an MFC list with barrier. This command and all subsequent commands
with the same tag ID as this command are locally ordered with respect to all previ-
ously issued commands within the same tag group and command queue.

putrlf x‘0036’ Channel Same as putlf with a PPE L2 cache scarf hint used to send results to a PPE.1

putrlb x‘0035’ Channel Same as putlb with a PPE L2 cache scarf hint used to send results to a PPE.1

Get Commands

get x‘0040’ Proxy/Channel Moves data from an effective address within the main storage domain to local stor-
age.

gets x‘0048’ Proxy Moves data from an effective address within the main storage domain to local stor-
age. Starts the SPU after DMA operation completes.

1. Scarfing is the direct transfer of data to a PPE L2 cache.
Defined Commands

Page 312 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Table D-3 lists the storage control commands available for the first level DMA transfer cache (SL1).

Table D-4 lists the synchronization commands available in the CBEA.

getf x‘0042’ Proxy/Channel
Moves data from an effective address within the main storage domain to local stor-
age with fence. This command is locally ordered with respect to all previously issued
commands within the same tag group and command queue.

getb x‘0041’ Proxy/Channel

Moves data from an effective address within the main storage domain to local stor-
age with barrier. This command and all subsequent commands with the same tag ID
as this command are locally ordered with respect to all previously issued commands
within the same tag group and command queue.

getfs x‘004A’ Proxy

Moves data from an effective address within the main storage domain to local stor-
age with fence. This command is locally ordered with respect to all previously issued
commands within the same tag group. Starts the SPU after DMA operation com-
pletes.

getbs x‘0049’ Proxy

Moves data from an effective address within the main storage domain to local stor-
age with barrier. This command and all subsequent commands with the same tag ID
as this command are locally ordered with respect to all previously issued commands
within the same tag group and command queue. Starts the SPU after DMA operation
completes.

getl x‘0044’ Channel Moves data from an effective address within the main storage domain to local stor-
age using an MFC list.

getlf x‘0046’ Channel
Moves data from an effective address within the main storage domain to local stor-
age using an MFC list with fence. This command is locally ordered with respect to all
previously issued commands within the same tag group and command queue.

getlb x‘0045’ Channel

Moves data from an effective address within the main storage domain to local stor-
age using an MFC list with barrier. This command and all subsequent commands
with the same tag ID as this command are locally ordered with respect to all previ-
ously issued commands within the same tag group and command queue.

Table D-3. SL1 Storage Control Commands

Mnemonic Opcode Support Description

sdcrt x'0080' Proxy/Channel Brings a range of effective addresses into the SL1 (performance hint for DMA gets).1

sdcrtst x'0081’ Proxy/Channel Brings a range of effective addresses into the SL1 (performance hint for DMA puts).1

sdcrz x'0089’ Proxy/Channel Writes zeros to the contents of a range of effective addresses.

sdcrst x'008D’ Proxy/Channel Stores the modified contents of a range of effective addresses.

sdcrf x'008F’ Proxy/Channel Stores the modified contents of a range of effective addresses and invalidates the
block.

1. These commands do not transfer data in implementations without an SL1.

Table D-2. Data Transfer or MFC DMA Commands (Page 2 of 2)

Mnemonic Opcode Support
(Proxy/Channel) Description

1. Scarfing is the direct transfer of data to a PPE L2 cache.
Version 1.02
October 11, 2007

Defined Commands

Page 313 of 358

Cell Broadband Engine Architecture
Table D-5 lists the atomic commands available in the CBEA.

Table D-4. MFC Synchronization Commands

Command Opcode Support Description

sndsig x‘00A0’ Proxy/Channel Updates signal notification registers in an I/O device or another SPU. This command
is actually a 4-byte DMA put that can go to any address.

sndsigf x‘00A2’ Proxy/Channel Updates signal notification registers in an I/O device or another SPU with fence. This
command is actually a 4-byte DMA put that can go to any address.

sndsigb x‘00A1’ Proxy/Channel Updates signal notification registers in an I/O device or another SPU with barrier. This
command is actually a 4-byte DMA put that can go to any address.

barrier x‘00C0’ Proxy/Channel

Barrier type ordering. Ensures ordering of all preceding, nonimmediate DMA com-
mands with respect to all commands following the barrier command within the same
command queue. The barrier command has no effect on the immediate DMA com-
mands: getllar, putllc, and putlluc.

mfceieio x‘00C8’ Proxy/Channel

The mfceieio command orders the storage transactions caused by get and put com-
mands. To ensure that the commands are correctly ordered, the commands must be
in the same tag group as the mfceieio command, or a barrier command must be
issued before the mfceieio command. The mfceieio command orders transactions
as follows, assuming the MFC DMA commands are within the specified tag group.

• Orders get or put commands with respect to other get or put commands that
access storage defined as caching inhibited and guarded.

• Orders put commands that access storage defined as write through required
with respect to put or get commands that access storage defined as caching
inhibited and guarded.

• Orders put or get commands that access storage defined as caching inhibited
and guarded with respect to put commands that access storage defined as write
through required.

• Orders put commands with respect to put commands that access storage that is
defined as memory coherency required and is neither write through required nor
caching inhibited.

mfcsync x‘00CC’ Proxy/Channel Controls the ordering of DMA put and get operations within the specified tag group
with respect to other processing units and devices in the system.

Table D-5. MFC Atomic Commands

Command Opcode Support Description

getllar x‘00D0’ Channel Gets a lock line and creates a reservation (executes immediately).

putllc x‘00B4’ Channel Puts lock line conditional on a reservation (executes immediately).

putlluc x‘00B0’ Channel Puts lock line unconditional (executes immediately).

putqlluc x‘00B8’ Channel Puts lock line unconditional (queued form).
Defined Commands

Page 314 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Appendix E. Extensions to the PowerPC Architecture

This section describes instructions and facilities that are extensions to the PowerPC Architecture. They are
not described in the PowerPC Architecture document. See the following sections for more information:

• Section E.1 Software Management of TLBs (optional)

• Section E.2 Mediated External Exception Extension (optional) on page 316

• Section E.3 Multiple Concurrent Large Pages (optional) on page 318

• Section E.4 Defined Behavior for Inaccessible SPRs on page 319

• Section E.5 Vector/SIMD Multimedia Extension (optional) on page 319

E.1 Software Management of TLBs (optional)

Optionally, an implementation can support software management of the translation lookaside buffers (TLBs)
for both the PowerPC Processor Elements (PPEs) and Synergistic Processor Elements (SPEs). The facilities
for software management of the SPE and PPE TLBs are described in Section 14.3 Translation Lookaside
Buffer Management on page 207.

In addition to the facilities described in Section 14.3, the following PPE changes to the existing instructions
and facilities defined in the PowerPC Architecture can be implemented:

• Add the translation lookaside buffer (TLB) Load Control bit (LPCR[TL]) to the Logical Partitioning Control
Register (LPCR). The values for the TLB Load Control bit (LPCR[53]) follow:

0 TLB is loaded by hardware.
1 TLB is loaded by software.

• Add the invalidate selector (IS) field to the RB register of the tlbiel instruction. The values for the IS field
(RB[52:53]) follow:

00 The TLB is as selective as possible in invalidating the TLB entry. The implementation should use as
many virtual page number (VPN) bits as possible, including the L, LP, and LPID, to eliminate invali-
dating unnecessary entries.

01 The TLB entry is not invalidated. Any lower level caches of the translation are invalidated.

10 The TLB does a congruency-class invalidate if the LPID matches the current value in the Logical Par-
tition ID Register (LPIDR).

11 The TLB does a congruency-class invalidate regardless of LPID match.

Implementation Note: An implementation can choose to implement a subset of these options. It is
always acceptable for an implementation to invalidate more TLB entries than specified by this instruction.
The IS bits only provide a useful hint for a performance benefit.
Version 1.02
October 11, 2007

Extensions to the PowerPC Architecture

Page 315 of 358

Cell Broadband Engine Architecture
E.2 Mediated External Exception Extension (optional)

Optionally, a PPE can support the mediated external exception extension to the PowerPC Architecture. On a
shared processor (that is, a processor on which virtual partitions are dispatched), the mediated external
exception extension can reduce external interrupt latency.

In the current PowerPC Architecture, external interrupts are disabled if the External Interrupt Enable bit in the
Machine State Register (MSR[EE]) is set to ‘0’. Since MSR[EE] can be altered by an operating system, the
presentation of an external interrupt for other partitions can be delayed by an arbitrary amount of time. This
can affect the interrupt latency of other partitions. The mediated external exception extension addresses the
interrupt latency issue by allowing the presentation of an external interrupt even if interrupts are disabled
(MSR[EE] is set to ‘0’).

The mediated external exception extension defines a new external exception called a “mediated external
exception.” The currently defined external exception is called a “direct external exception.” An external inter-
rupt that is caused by a mediated external exception is called a “mediated external interrupt.” Correspond-
ingly, an external interrupt that is caused by a direct external exception is called a “direct external interrupt.”

The mediated external exception extension requires the following changes to the existing facilities described
in the PowerPC Architecture:

• Define bit 52 of the Logical Partitioning Control Register (LPCR) as the Mediated External Exception
Request (MER) bit. The values of the LPCR[MER] bit follow:

0 Mediated external exception is not requested.
1 Mediated external exception is requested.

• If the Logical Partitioning Environment Selector bit (LPCR[LPES0]) is set to ‘0’ when a direct or mediated
external interrupt occurs, save the state in Hypervisor Machine Status Save/Restore Register 0 (HSRR0)
and Hypervisor Machine Status Save/Restore Register 1 (HSRR1). If LPCR[LPES0] is set to ‘1’, save the
state in Machine Status Save/Restore Register 0 (SRR0) and Machine Status Save/Restore Register 1
(SRR1).

• If LPCR[LPES0] is set to ‘0’ when an external interrupt occurs, set HSRR1[42] to ‘1’ for a mediated exter-
nal interrupt; otherwise, set it to ‘0’. If LPCR[LPES0] is set to ‘1’ when an external interrupt occurs, set
SRR1[42] to ‘0’. There is no relative priority between direct and mediated external exceptions. If an exter-
nal interrupt occurs when both kinds of external exceptions exist and are enabled, the exception that
actually caused the interrupt can be either.

• Define an implementation-specific enable bit for the mediated external exception extension. If this bit is
not set, external interrupts are handled as defined in the PowerPC Architecture.

• Ensure that mediated external interrupts do not occur when LPCR[LPES0] is set to ‘1’. A hypervisor can
accomplish this by setting LPCR[MER] to ‘0’ whenever it sets LPCR[LPES0] to ‘1’. If a hypervisor violates
this requirement, the results are undefined.

A signal from the internal interrupt controller (IIC) causes direct external exceptions (see Section 21.2 Inter-
rupt Presentation on page 262). Mediated external exceptions are caused by a hypervisor setting the Medi-
ated External Exception Request bit in the LPCR to ‘1’ (LPCR[MER] = ‘1’). The equations for enabling both
types of external exceptions follow.
Extensions to the PowerPC Architecture

Page 316 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
• Direct external interrupts are enabled if the value of the following expression is ‘1’:

MSR[EE] | (̂ (LPCR[LPES0]) & (̂ (MSR[HV]) | MSR[PR]))

In particular, if LPCR[LPES0] = ‘0’ (directing external interrupts to the hypervisor), direct external inter-
rupts are enabled if the processor is not in hypervisor state.

Note: Because the value of MSR[EE] is always ‘1’ when the processor is in problem state, the following
simpler expression is equivalent to the preceding expression:

MSR[EE] | ̂ (LPCR[LPES0] | MSR[HV])

• Mediated external interrupts are enabled if the value of the following expression is ‘1’:

MSR[EE] & (̂ (MSR[HV]) | MSR[PR])

In particular, mediated external interrupts are disabled if the processor is in hypervisor state.

E.2.1 Using the Mediated External Exception Extension

This section provides an example of how the mediated external exception extension can be used in a shared
processor with LPCR[LPES0] set to ‘0’. The example shows the conditions and steps necessary to redispatch
a logical partition. In this example, an external interrupt has occurred for the currently executing virtual parti-
tion and has not yet been presented to the virtual partition.

Note: If the external interrupt has occurred for a nonactive logical partition and has not yet been presented to
the partition, the hypervisor can save the currently executing partition’s state, restore the state of the partition
for which the interrupt is intended, making it the currently executing virtual partition. This allows the interrupt
to be handled with the minimal latency.

The example assumes that the external Real Mode Offset Register (RMOR) and the Hypervisor Real Mode
Offset Register (HRMOR) are set to different values (see the implementation-specific documentation for more
information about these registers). The operating system’s external interrupt handler is located at
RMOR | x‘500’; the hypervisor’s external interrupt handler is located at HRMOR | x‘500’.

The hypervisor passes control to the operating system’s external interrupt handler as described below.

• If the external interrupt was direct (HSRR1[42] = ‘0’) and external interrupts are enabled for the partition
(MSR[EE] = ‘1’), the hypervisor performs these steps:

1. Sets LPCR[MER] to ‘0’.

2. Sets registers (MSR, SRR0 and SRR1, and the external interrupt hardware registers as appropriate)
to emulate the external interrupt.

3. Returns to the operating system’s external interrupt handler (by executing the hrfid instruction with
HSRR0 set to x‘500’ and HSRR1 set to the proper MSR value as required by the architecture).

• If the external interrupt was direct (HSRR1[42] = ‘0’) but external interrupts are disabled for the partition
(MSR[EE] = ‘0’), the hypervisor performs these steps:

1. Sets LPCR[MER] to ‘1’.

2. Resets the PPE interrupting condition by performing a destructive read of the Interrupt Pending Port
Register (see page 263), queueing the interrupt status for later presentation to the owning partition.

3. Sets the Interrupt Current Priority Level Register (see page 268) to the least favored current priority
of all virtual partitions.
Version 1.02
October 11, 2007

Extensions to the PowerPC Architecture

Page 317 of 358

Cell Broadband Engine Architecture
4. Returns to the partition at the instruction at which it was interrupted (by executing the hrfid instruc-
tion).

Note: In this section, it is assumed that LPCR[LPES0] is set to ‘0’. Therefore, it is necessary to
return to the partition because the hypervisor is handling the external interrupt.

• If the external interrupt was mediated (HSRR1[42] = ‘1’) and external interrupts are now enabled for the
partition (MSR[EE] = ‘1’), the hypervisor performs these steps:

1. Sets registers (MSR, SRR0 and SRR1, and external interrupt hardware registers as appropriate) to
emulate the original direct external interrupt.

2. Returns to the operating system’s external interrupt handler (by executing the hrfid instruction with
HSRR0 set to x‘500’ and HSRR1 set to the correct MSR value as required by the architecture).

3. When the operating system’s external interrupt handler calls the hypervisor to obtain the interrupting
condition and status, sets LPCR[MER] to ‘0’ if all external interrupts (for the partition) now have been
presented to the partition. Otherwise, does not modify the LPCR[MER]. Returns from the hypervisor
call with the dequeued interrupting condition and status.

In all three cases, the partition is redispatched with MSR[EE] set to ‘0’. Before the partition is redispatched to
the operating system’s external interrupt handler (as in the first and third cases), the hypervisor sets the MSR
and SRR0 and SRR1 as if the original direct external interrupt occurred when LPCR[LPES0] was set to ‘1’
and the partition was executing. In particular, no indication is provided to the operating system (for example,
in an SRR1 bit) about whether the external interrupt that is now being presented to the partition was direct, as
in the first case, or mediated, as in the third case.

E.3 Multiple Concurrent Large Pages (optional)

Optionally, an implementation can support multiple concurrent large pages for the address translation mech-
anism. In the current PowerPC Architecture, only the default page size of 4 KB and one larger page size is
supported. The CBEA extends the address translation mechanism of the PowerPC Architecture with support
for up to eight concurrent large pages. The number of large pages that are supported and the size of the large
pages is implementation dependent. Thus, an implementation can choose to only support 4 KB pages.

The following changes to the existing address translation facility described in the PowerPC Architecture can
be implemented:

• Define reserved bits 58 and 59 of the segment lookaside buffer (SLB) as the LP field (SLB[LP]).

• The page size selected by the SLB is now the L bit concatenated with the LP field (SLB[L] || SLB[LP]).

• The real page number (RPN) field of the page table entry (PTE) is now split into two fields: abbreviated
real page number (ARPN) and LP.

• The L bit in the SLB no longer has to match the L bit in the TLB.

The new LP field in the SLB changes the definition of the slbmte and slbmfev PowerPC instructions. Bits 58
and 59 of the RS register are now defined as the LP field for the slbmte instruction. Bits 58 and 59 of the RT
register are now defined as the LP field for the slbmfev instruction.

The lower 8 bits of the RPN in the page table entry are now defined as the large page selector (LP). The
remaining upper bits are now defined as the ARPN. When the L bit in the PTE is ‘0’, the page size is 4 KB.
The RPN is the ARPN field concatenated with the LP field (ARPN || LP). When the L bit is ‘1’, the lower bits of
the LP field select the page size; the ARPN concatenated with the remaining upper bits of the LP field is the
Extensions to the PowerPC Architecture

Page 318 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
real page number (RPN). The number of upper bits used from the LP field is dependent on the page size
selected. The definition of the LP field in the PTE is the same as the LP field in the TLB Real Page Number
Register (see page 212).

When searching the page table, the L bit in the SLB no longer has to match the L bit in the TLB. Instead, the
page size selected by the SLB (SLB[L] || SLB[LP]) must match the page size selected by TLB[L] || TLB[LP]
for the PTE to match the effective address.

E.4 Defined Behavior for Inaccessible SPRs

The current PowerPC Architecture allows an implementation boundedly undefined behavior when an inac-
cessible special purpose register (SPR) is accessed using the mtspr or mfspr instructions. The CBEA further
defines the behavior when inaccessible SPRs are accessed. Specifically, when the processor is in problem
state, either a privileged or illegal instruction interrupt occurs, depending on the value of the high-order bit of
the SPR number. When the processor is in privileged state, the instruction is executed as a no-op. Executing
the instruction as a no-op when the processor is in privileged state allows an operating system to uncondition-
ally save and restore nonprivileged SPRs that may not be implemented on some processors, regardless of
the processor on which it is executing.

When reading unimplemented or write only SPRs, an implementation is allowed to return zeros instead of
treating the read as a no-op. If an implementation returns zeros, it is not required to cause an interrupt when
the processor is in problem state and the higher order bit of the SPR number is zero. However, implementa-
tion of the behavior described in the preceding paragraph is strongly recommended.

E.5 Vector/SIMD Multimedia Extension (optional)

To improve the performance of a PPE for multimedia applications, the PPEs can support the vector/single
instruction, multiple data (SIMD) multimedia extension to the PowerPC Architecture. The vector/SIMD multi-
media extension enhances the current PowerPC instruction set with 4-way SIMD instructions. For a definition
of the instructions, see the PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology
Programming Environments Manual, version 2.07c.
Version 1.02
October 11, 2007

Extensions to the PowerPC Architecture

Page 319 of 358

Cell Broadband Engine Architecture
Extensions to the PowerPC Architecture

Page 320 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Appendix F. Examples of Access Ordering

This appendix contains examples of access ordering as discussed in Section 10 beginning on page 175.

The following examples demonstrate the order of accesses originated by a synergistic processor unit (SPU),
a memory flow controller (MFC), or a PowerPC Processor Element (PPE). In these examples, MFC, SPU,
and PPE are each shown executing a sequence of instructions or commands. No order between sequences
is implied merely by the relative line position of any instruction or command in one sequence compared to the
line position of an instruction or command in another sequence. Unless otherwise stated, main storage loca-
tions in these examples have main storage attributes of coherence required and not caching inhibited. Local
storage alias in these examples have main storage attributes of caching inhibited when accessed from the
main storage domain.

See Section 8.8.1 MFC Multisource Synchronization Register beginning on page 109 for additional examples
of cumulative ordering across the local storage and main storage domains.

Example 1: putf to main storage

If main storage location D is written with the new value of local storage location B, then main storage location
C is written with the new value of local storage location A. After PPE (0) loads the new value of location C, it
must load the new value of location D.

Example 2: putf to remote local storage

If local storage location D is written with the new value of local storage location B, then local storage location
C is written with the new value of local storage location A. When SPU (1) loads the new value of local storage
location C, it must load the value of local storage location D.

SPU (0)

1. Store to local storage location
A.

2. dsync

3. Store to local storage location
B.

MFC (0)

1. put TG = ‘1’: copy local stor-
age location B to the main
storage location D.

2. putf TG = ‘1’: copy local stor-
age location A to the main
storage location C.

PPE (0)

1. Load main storage location C.

2. Use any serialization mecha-
nism that causes these loads
to be performed in order (see
PowerPC Architecture, Books
I-III).

3. Load main storage location D.

SPU (0)

1. Store to local storage location
A.

2. dsync

3. Store to local storage location
B.

MFC (0)

1. put TG = ‘1’: copy local stor-
age location B of SPU (0) to
local storage location D of
SPU (1).

2. putf TG = ‘1’: copy local stor-
age location A of SPU (0) to
local storage location C of
SPU (1).

SPU (1)

1. Load local storage location C.

2. dsync

3. Load local storage location D.
Version 1.02
October 11, 2007

Examples of Access Ordering

Page 321 of 358

Cell Broadband Engine Architecture
Example 3: getf versus PPE stores

If MFC (0) gets the new value of location A, it must get the new value of B.

Example 4: getf versus remote SPU stores

If MFC (0) gets the new value of location A, it must get the new value of B.

Example 5: getf versus local SPU loads

This example only demonstrates storage access ordering. It is not a recommended programming method.
Typically, software would use the tag group completion facility to get predictable new values for the SPU
loads.

If SPU (0) loads the new value of location B, it must also load the new value of A.

Example 6: Tag-independent barrier command versus local SPU loads

If SPU (0) loads the new value of location B, it must load the new value of A.

MFC (0)

1. get TG = ‘1’: read main storage location A.

2. getf TG = ‘1’: read main storage location B.

PPE (0)

1. Store to main storage location B.

2. Use any serialization mechanism that causes
these stores to be performed in order (see
PowerPC Architecture, Books I-III).

3. Store to main storage location A.

MFC (0)

1. get TG = ‘1’: read local storage location A of
SPU (1).

2. getf TG = ‘1’: read local storage location B of
SPU (1).

SPU (1)

1. Store to local storage location B.

2. dsync

3. Store to local storage location A.

MFC (0)

1. get TG = ‘1’: copy main storage location C to
local storage location A of SPU (0).

2. getf TG = ‘1’: copy main storage location D to
local storage location B of SPU (0).

SPU (0)

1. Load from local storage location B.

2. dsync

3. Load from local storage location A.

MFC (0)

1. get TG = ‘1’: copy main storage location X to
local storage location A.

2. barrier TG = ‘2’.

3. get TG = ‘3’: copy main storage location Y to
local storage location B.

SPU (0)

1. Load from local storage location B.

2. dsync

3. Load from local storage location A.
Examples of Access Ordering

Page 322 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Example 7: Tag-group status completion and put versus PPE loads

This sequence assumes the MFC Write Tag-Group Query Mask Channel (see page 129) is already set so
that tag group 1 is part of a query.

If PPE (0) loads the new value of location B, PPE(0) can load either the old or the new value of A. The DMA
accesses are ordered with respect to local storage of SPU (0) by the MFC Read Tag-Group Status comple-
tion status but are not ordered with respect to the main storage domain.

When the status returned by a channel read instruction that targets the MFC Read Tag-Group Status
Channel (see page 133) indicates that a queued put or get command is complete, the MFC local storage
address (LSA) access is complete. See Section 10 Storage Access Ordering on page 175 for more informa-
tion.

Example 8: Tag-group status completion and put versus local SPU loads

This sequence assumes the MFC Write Tag-Group Query Mask Channel (see page 129) is already set so
that tag group 1 is part of a query.

If SPU (1) loads the new value of location B, it can load either the old or the new value of A. The DMA
accesses for each put command are locally ordered with respect to local storage of SPU (0) by the tag-group
completion status, but they are not ordered with respect to the local storage of another SPU.

SPU (0)

1. Enqueue a put TG = ‘1’ to write main storage
location A.

2. Request an immediate tag-status update and
wait for tag group completion.
For more information, see Section 9.3 MFC
Tag-Group Status Channels on page 126, and
Section 9.3.5 MFC Write Tag Status Update
Request Channel on page 132.

3. Enqueue a put TG = ‘1’ to write main storage
location B.

PPE (0)

1. Load from main storage location B.

2. Use any serialization mechanism that orders
these loads.

3. Load from main storage location A.

SPU (0)

1. Enqueue a put TG = ‘1’ to write main storage
location A.

2. Request an immediate tag-status update and
wait for tag group completion.
For more information, see Section 9.3 MFC
Tag-Group Status Channels on page 126, and
Section 9.3.5 MFC Write Tag Status Update
Request Channel on page 132.

3. Enqueue a put TG = ‘1’ to write main storage
location B.

SPU (1)

1. Load from local storage location B.

2. dsync

3. Load from local storage location A.
Version 1.02
October 11, 2007

Examples of Access Ordering

Page 323 of 358

Cell Broadband Engine Architecture
When the status returned by a channel read instruction that targets the MFC Read Tag-Group Status
Channel (see page 133) indicates that a queued put or get command is complete, the MFC local storage
address (LSA) access is complete. See Section 10 Storage Access Ordering on page 175 for more informa-
tion.

Example 9: mfcsync and put versus PPE loads

If PPE (0) loads the new value of location B, it must also load the new value of A.

Example 10: mfcsync and put versus remote SPU local storage loads

If SPU (1) loads the new value of location B, it must also load the new value of A.

Example 11: mfcsync and put versus local SPU local storage stores

This example only demonstrates storage access ordering. If it is only necessary to ensure local storage
access order and not main storage access order, then a tag-specific fence or barrier is sufficient.

If MFC (0) reads the new value of location A, it must also read the new value of B.

MFC (0)

1. put TG = ‘1’ to write main storage location A.

2. mfcsync TG = ‘1’

3. put TG = ‘1’ to write main storage location B.

PPE (0)

1. Load main storage location B.

2. Use any serialization mechanism that causes
these loads to be performed in order (see Pow-
erPC Architecture, Books I-III.)

3. Load main storage location A.

MFC (0)

1. put TG = ‘1’ to write local storage location A of
SPU (1).

2. mfcsync TG = ‘1’

3. put TG = ‘1’ to write local storage location B of
SPU (1).

SPU (1)

1. Load from local storage location B.

2. dsync

3. Load from local storage location A.

MFC (0)

1. put TG = ‘1’ to read from local storage
location A.

2. mfcsync TG = ‘1’

3. put TG = ‘1’ to read from local storage
location B.

SPU (0)

1. Store to local storage location B.

2. dsync

3. Store to local storage location A.
Examples of Access Ordering

Page 324 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Example 12: mfcsync and get

If MFC (0) gets the new value of location A, it must also get the new value of B.

Example 13: Cumulative Ordering

If PPE (0) loads the new value of location A and MFC (1) gets the new value of B, MFC (1) must also get the
new value of A.

Example 14: Cumulative Ordering

If MFC (1) gets the new value of C, MFC (1) must also get the new value of A.

Example 15: SPU stores versus PPE loads

If PPE (0) loads the new value of location B, it must also load the new value of location A.

MFC (0)

1. get TG = ‘1’ to read from main storage location
A.

2. mfcsync TG = ‘1’

3. get TG = ‘1’ to read from main storage
location B.

PPE (0)

1. Store to main storage location B.

2. Use any serialization mechanism that causes
these stores to be performed in order (see
PowerPC Architecture, Books I-III).

3. Store to main storage location A.

MFC (0)

1. put to write main storage
location A.

PPE (0)

1. Load from main storage loca-
tion A.

2. sync

3. Store to main storage location
B.

MFC (1)

1. get TG = ‘1’ to read main stor-
age location B.

2. mfcsync TG = ‘1’

3. get TG = ‘1’ to read main stor-
age location A.

MFC (0)

1. put TG = ‘1’ to write main
storage location A.

2. mfcsync TG = ‘1’

3. put TG = ‘1’ to write main
storage location B.

PPE (0)

1. Loop loading from main stor-
age location B until the new
value is loaded.

2. Store to main storage location
C.

MFC (1)

1. get TG = ‘1’ to read main stor-
age location C.

2. mfcsync TG = ‘1’

3. get TG = ‘1’ to read main stor-
age location A.

SPU (1)

1. Store to local storage location A.

2. dsync

3. Store to local storage location B.

PPE (0)

1. Load local storage location B.

2. Use any serialization mechanism that causes
these loads to be performed in order (see Pow-
erPC Architecture, Books I-III.)

3. Load local storage location A.
Version 1.02
October 11, 2007

Examples of Access Ordering

Page 325 of 358

Cell Broadband Engine Architecture
Example 16: SPU loads versus PPE stores

If SPU (1) loads the new value of location B, it must also load the new value of A.

Example 17: SPU loads versus PPE stores to local storage and SPU Signal Notification 1 Register.

In this example, if more than two units are involved in the set of storage accesses that must be completed
before the store to the SPU Signal Notification 1 Register, then MFC Multisource Synchronization Register
(see page 109) must be used.

If SPU (1) loads the new value of the SPU Signal Notification 1 Register, it must also load the new value of A.

Example 18: SPU loads versus PPE stores to local storage and SPU Inbound Mailbox Register (see page
103)

If SPU (1) loads the new value of the SPU Inbound Mailbox Register, it must also load the new value of A.

SPU (1)

1. Load from local storage location B.

2. dsync

3. Load from local storage location A.

PPE (0)

1. Store to local storage location A.

2. Use any serialization mechanism that causes
these stores to be performed in order (see
PowerPC Architecture, Books I-III).

3. Store to local storage location B.

SPU (1)

1. Read from SPU Signal Notification 1 Register.

2. dsync

3. Load from local storage location A.

PPE (0)

1. Store to local storage location A.

2. Use any serialization mechanism that causes
these stores to be performed in order (see
PowerPC Architecture, Books I-III).

3. Store to SPU Signal Notification 1 Register.

SPU (1)

1. Read from SPU Inbound Mailbox Register.

2. dsync

3. Load from local storage location A.

PPE (0)

1. Store to local storage location A.

2. Use any serialization mechanism that causes
these stores to be performed in order (see
PowerPC Architecture, Books I-III).

3. Store to SPU Inbound Mailbox Register.
Examples of Access Ordering

Page 326 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Example 19: mfceieio and put versus PPE loads

If PPE (0) loads the new value of location B, it must also load the new value of A.

Example 20: mfceieio and get

Main storage locations A and B have the storage attributes of caching inhibited and guarded.

If MFC (0) gets the new value of location A, it must also get the new value of B.

MFC (0)

1. put TG = ‘1’ to write main storage location A.

2. mfceieio TG = ‘1’

3. put TG = ‘1’ to write main storage location B.

PPE (0)

1. Load main storage location B.

2. Use any serialization mechanism that causes
these loads to be performed in order (see Pow-
erPC Architecture, Books I-III.)

3. Load main storage location A.

MFC (0)

1. get TG = ‘1’ to read from main storage
location A.

2. mfceieio TG = ‘1’

3. get TG = ‘1’ to read from main storage
location B.

PPE (0)

1. Store to main storage location B.

2. eieio

3. Store to main storage location A.
Version 1.02
October 11, 2007

Examples of Access Ordering

Page 327 of 358

Cell Broadband Engine Architecture
Examples of Access Ordering

Page 328 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Glossary

acknowledgment A transmission that is sent as an affirmative response to a data transmission.

architecture A detailed specification of requirements for a processor or computer system. It
does not specify details of how the processor or computer system must be imple-
mented; instead it provides a template for a family of compatible implementations.

barrier 1. A global command that ensures ordering of all preceding, nonimmediate DMA
commands with respect to all commands following the barrier command within
the same command queue.

2. A tag-specific MFC command modifier that ensures that the command with the
barrier modifier and all subsequent commands with the same tag ID are locally
ordered with respect to all previously issued commands within the same tag
group and command queue. Compare to fence.

BIC Bus interface controller. Part of the Cell Broadband Engine interface (BEI) to I/O.

big endian A byte-ordering method in memory where the address n of a word corresponds to
the most-significant byte. In an addressed memory word, the bytes are ordered
(left to right) 0, 1, 2, 3, with 0 being the most-significant byte. See little endian.

bisled branch indirect and set link if external data instruction

BIU Bus interface unit. Part of the PPE interface to the EIB.

cache High-speed memory close to a processor. A cache usually contains recently-
accessed data or instructions, but certain cache-control instructions can lock, evict,
or otherwise modify the caching of data or instructions.

caching inhibited A memory update policy in which the cache is bypassed, and the load or store is
performed to or from system memory.

A page of storage is considered caching inhibited when the “I” bit has a value of ‘1’
in the page table. Data located in caching inhibited pages cannot be cached at any
memory hierarchy that is not visible to all processors and devices in the system.
Stores must update the memory hierarchy to a level that is visible to all processors
and devices in the system.

CBEA See Cell Broadband Engine Architecture.

Cell Broadband Engine
Architecture

Extends the PowerPC 64-bit architecture with loosely coupled cooperative off-load
processors. The Cell Broadband Engine Architecture provides a basis for the
development of microprocessors targeted at the game, multimedia, and real-time
market segments. The Cell Broadband Engine is one implementation of the Cell
Broadband Engine Architecture.
Version 1.02
October 11, 2007

Glossary

Page 329 of 358

Cell Broadband Engine Architecture
channel Channels are unidirectional, function-specific registers or queues. They are the
primary means of communication between an SPE’s SPU and its MFC, which in
turn mediates communication with PPEs, other SPEs, and other devices. These
other devices use MMIO registers in the destination SPE to transfer information on
the channel interface of that destination SPE.

Specific channels have read or write properties, and blocking or nonblocking prop-
erties. Software on the SPU uses channel commands to enqueue DMA
commands, query DMA and processor status, perform MFC synchronization,
access auxiliary resources such as the decrementer (timer), and perform interpro-
cessor-communication via mailboxes and signal-notification.

CL The class ID parameter in an MFC command.

coherence Refers to memory and cache coherence. The correct ordering of stores to a
memory address, and the enforcement of any required cache write-backs during
accesses to that memory address. Cache coherence is implemented by a hard-
ware snoop (or inquire) method, which compares the memory addresses of a load
request with all cached copies of the data at that address. If a cache contains a
modified copy of the requested data, the modified data is written back to memory
before the pending load request is serviced.

CSA context-save area

CSRA context save and restore area

DAR Data Address Register

data storage interrupt An interrupt posted when a fault is encountered accessing storage or I/O space. A
typical data storage interrupt is a page fault or protection violation.

dcbf data cache block flush instruction

dcbst data cache block store instruction

dcbt data-cache block touch x-form instruction

dcbtst data cache block touch for store instruction

dcbz data cache block zero instruction

decrementer A register that counts down each time an event occurs. Each SPU contains dedi-
cated 32-bit decrementers for scheduling or performance monitoring, by the
program or by the SPU itself.

DMA Direct memory access. A technique for using a special-purpose controller to
generate the source and destination addresses for a memory or I/O transfer.

DMA command A type of MFC command that transfers or controls the transfer of a memory loca-
tion containing data or instructions.
Glossary

Page 330 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
DMA queue A storage area in which DMA commands are held until they complete. There are
two types of queues: the MFC proxy command queue and the SPU command
queue. The MFC proxy command queue holds commands issued by another
processor or device. The SPU command queue holds commands issued by the
corresponding SPU.

DMAC Direct memory access controller. A controller that performs DMA transfers.

DR data relocate

DSI See data storage interrupt.

DSISR Data Storage Interrupt Status Register

EAH MFC effective address high

EAL MFC effective address low

ECC See error correction code.

effective address An address generated or used by a program to reference memory. A memory-
management unit translates an effective address to a virtual address, which it then
translates to a real address (RA) that accesses real (physical) memory. The
maximum size of the effective-address space is 264 bytes.

EIB Element interconnect bus. The on-chip coherent bus that handles communication
between PPEs, SPEs, memory, and I/O devices (or another Cell Broadband
Engine).

EIC external interrupt controller

eieio enforce in-order execution of I/O transaction instruction

ERAT Effective-to-real-address translation, or a buffer or table that contains such transla-
tions, or a table entry that contains such a translation.

error correction code A code appended to a data block that can detect and correct bit errors within the
block.

ESID effective segment ID

exception An error, unusual condition, or external signal that can alter a status bit and will
cause a corresponding interrupt, if the interrupt is enabled. See interrupt.

fence A tag-specific MFC command modifier that causes the MFC to wait for completion
of all previously issued MFC commands within the same tag group and the same
command queue before starting the MFC command with the fence option. It does
not apply to subsequently issued commands or the immediate commands: getllar,
putllc, and putlluc. Compare to barrier.

fetch Retrieving instructions from either the cache or system memory and placing them
into the instruction queue.

FIFO First in, first out. Refers to one way elements in a queue are processed. It is analo-
gous to “people standing in line.”
Version 1.02
October 11, 2007

Glossary

Page 331 of 358

Cell Broadband Engine Architecture
FLIH first-level interrupt handler

floating point A way of representing real numbers (that is, values with fractions or decimals) in 32
bits or 64 bits. Floating-point representation is useful to describe very small or very
large numbers.

fres floating reciprocal estimate single A-form instruction

frsqte floating reciprocal square-root estimate A-form instruction

general purpose register An explicitly addressable register that can be used for a variety of purposes (for
example, as an accumulator or an index register).

getllar get lock line and reserve command

GPR See general purpose register.

guarded Prevented from responding to speculative loads and instruction fetches. The oper-
ating system typically implements guarding, for example, on all I/O devices.

HID hardware implementation dependent

hypervisor A control (or virtualization) layer between hardware and the operating system. It
allocates resources, reserves resources, and protects resources among (for
example) sets of SPEs that may be running under different operating systems.

The Cell Broadband Engine has three operating modes: user, supervisor, and
hypervisor. The hypervisor performs a meta-supervisor role that allows multiple
independent supervisors’ software to run on the same hardware platform.

For example, the hypervisor allows both a real-time operating system and a tradi-
tional operating system to run on a single PPE. A PPE can then operate a subset
of the SPEs in the Cell Broadband Engine with the real-time operating system,
while the other SPEs run under the traditional operating system.

IABR Instruction Address Breakpoint Register

icbi instruction cache block invalidate instruction

IDEA implementation-dependent expansion area

IGP interrupt generation port

IIC internal interrupt controller

implementation A particular processor that conforms to the architecture but may differ from other
architecture-compliant implementations for example in design, feature set, and
implementation of optional features.

instruction cache A cache for providing program instructions to the processor faster than they can be
obtained from system memory.

INT See interrupt.

interrupt A change in machine state in response to an exception. See exception.
Glossary

Page 332 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
interrupt packet Used to signal an interrupt, typically to a processor or to another interruptible
device.

IOC I/O controller

IOIF Cell Broadband Engine I/O Interface. The EIB’s noncoherent protocol for intercon-
nection to I/O devices.

IPI interprocessor interrupt

IR instruction relocate

ISA instruction set architecture

ISRC interrupt source

JTAG Joint Test Action Group

KB kilobyte

L1 Level-1 cache memory. The closest cache to a processor, measured in access
time.

L2 Level-2 cache memory. The second-closest cache to a processor, measured in
access time. An L2 cache is typically larger than an L1 cache.

LA A local storage (LS) address of an MFC list. It is used as a parameter in an MFC
command.

ld load doubleword instruction

ldarx load doubleword and reserve x-form instruction

LEAL list element effective address low

least recently used A policy for a caching algorithm that removes from the cache the item that has the
longest elapsed time since its last access. An algorithm used to identify and make
available the cache space that contains the data that was least recently used.

least-significant bit The bit of least value in an address, register, data element, or instruction encoding.

little endian A byte-ordering method in memory where the address n of a word corresponds to
the least-significant byte. In an addressed memory word, the bytes are ordered (left
to right) 3, 2, 1, 0, with 3 being the most-significant byte. See big endian.

livelock An endless loop in program execution.

lmw load multiple word instruction

local storage The storage associated with each SPE. It holds both instructions and data.

logical partitioning A function of an operating system that enables the creation of logical partitions.

LPAR See logical partitioning.

LPID logical-partition identity
Version 1.02
October 11, 2007

Glossary

Page 333 of 358

Cell Broadband Engine Architecture
LRU See least recently used.

LS See local storage.

LSA Local storage address. An address in the LS of an SPU, by which programs
running in the SPU and DMA transfers managed by the MFC access the LS.

LSb See least-significant bit.

LSCA local storage compare address

LSCAM local storage compare address mask

LSCSA local storage context save area

lswi load string word immediate instruction

lswx load string word indexed instruction

LSZ MFC list size

LTS list element transfer size

lwarx load word and reserve x-form instruction

mailbox A queue in an SPE’s MFC for exchanging 32-bit messages between SPEs, PPEs,
or other devices. Two mailboxes (the SPU Write Outbound Mailbox and SPU Write
Outbound Interrupt Mailbox) are provided for sending messages from an SPE. One
mailbox (the SPU Read Inbound Mailbox) is provided for sending messages to an
SPE.

main storage The effective-address space. It consists physically of real memory (whatever is
external to the memory-interface controller), SPU LSs, memory-mapped registers
and arrays, memory-mapped I/O devices, and pages of virtual memory that reside
on disk. It does not include caches or execution-unit register files.

See local storage.

mask A pattern of bits used to accept or reject bit patterns in another set of data. Hard-
ware interrupts are enabled and disabled by setting or clearing a string of bits, with
each interrupt assigned a bit position in a mask register

MB megabyte

memory coherency An aspect of caching in which it is ensured that an accurate view of memory is
provided to all devices that share system memory.

memory mapped Mapped into the Cell Broadband Engine’s addressable-memory space. Registers,
SPE local storage (LS), I/O devices, and other readable or writable storage can be
memory-mapped. Privileged software does the mapping.

MFC Memory flow controller. It is part of an SPE and provides two main functions:
moves data via DMA between SPE local storage (LS) and main storage, and
synchronizes the SPU with the rest of the processing units in the system.
Glossary

Page 334 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
mfceieio MFC enforce in-order execution of I/O command

mfcsync MFC synchronize command

mfspr move from special-purpose register instruction

MIC Memory interface controller. The Cell Broadband Engine’s MIC supports two
memory channels.

MMIO Memory-mapped input/output. See memory mapped.

MMU Memory management unit. A functional unit that translates between effective
addresses (EAs) used by programs and real addresses (RAs) used by physical
memory. The MMU also provides protection mechanisms and other functions.

most recently used A policy for a caching algorithm that removes from the cache the item that has the
shortest elapsed time since its last access., An algorithm used to identify and make
available the cache space that contains the data that was most recently used.

most-significant bit The highest-order bit in an address, registers, data element, or instruction
encoding.

MRU See most recently used.

MSb most-significant bit

MSR Machine State Register

mtmsr move to machine state register instruction

mtspr move to special-purpose register instruction

no-op No-operation. A single-cycle operation that does not affect registers or generate
bus activity.

page A region in memory. The PowerPC Architecture defines a page as a 4 KB area of
memory, aligned on a 4 KB boundary or a large page size which is implementation
dependent.

page table A table that maps virtual addresses (VAs) to real addresses (RAs) and contains
related protection parameters and other information about memory locations.

PMD power management and debug area

PME privileged mode environment

POR power-on reset

PowerPC Of or relating to the PowerPC Architecture or the microprocessors that implement
this architecture.

PowerPC
Architecture

A computer architecture that is based on the third generation of reduced instruction
set computer (RISC) processors. The PowerPC Architecture was developed jointly
by Apple, Motorola, and IBM.
Version 1.02
October 11, 2007

Glossary

Page 335 of 358

Cell Broadband Engine Architecture
PPE PowerPC Processor Element. A general-purpose processor in the Cell Broadband
Engine. Consists of the PPU and the PPSS.

PPU PowerPC processor unit. The part of a PPE that includes execution units, memory-
management unit, and the L1 cache.

privileged mode Also known as supervisor mode. The permission level of operating system instruc-
tions. The instructions are described in PowerPC Architecture, Book III and are
required of software that accesses system-critical resources.

privileged software Software that has access to the privileged modes of the architecture.

problem state The permission level of user instructions. The instructions are described in
PowerPC Architecture, Books I and II and are required of software that implements
application programs.

PTE Page table entry. See page table.

putllc put lock line conditional command

putlluc put lock line unconditional command

putqlluc put queued lock line unconditional command

PVR Processor Version Register

QoS Quality of service. This usually relates to a guarantee of minimum bandwidth for
streaming applications.

quadword A group of 16 contiguous locations starting at an address divisible by 16.

RA real address

RAG resource allocation group

RAID resource allocation ID

RAM resource allocation management

rchcnt read channel count instruction

RClassID replacement class identifier

rdch read from channel instruction

real address An address for physical storage, which includes physical memory, a PPE’s L1 and
L2 caches, and SPE local storage (LS) if the operating system has mapped the
LSs to the real-address space. The maximum size of the real-address space is 242
bytes.

RFC request for change

RMT replacement management table

RNG random number generation
Glossary

Page 336 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
RPN real page number

scarfing The direct transfer of data to the PPE L2 cache

SCEI Sony Computer Entertainment Incorporated

sdcrf SL1 data cache range flush instruction

sdcrst SL1 data cache range store instruction

sdcrt SL1 data cache range touch instruction

sdcrtst SL1 data cache range touch for store instruction

sdcrz SL1 data cache range set to zero instruction

SDR Storage Descriptor Register

SG SPU group

signal Information sent on a signal-notification channel. These channels are inbound (to
an SPE) registers. They can be used by a PPE or other processor to send informa-
tion to an SPE. Each SPE has two 32-bit signal-notification registers, each of which
has a corresponding memory-mapped I/O (MMIO) register into which the signal-
notification data is written by the sending processor. Unlike mailboxes, they can be
configured for either one-to-one or many-to-one signalling.

These signals are unrelated to UNIX signals. See channel and mailbox.

SIMD Single instruction, multiple data. Processing in which a single instruction operates
on multiple data elements that make up a vector data-type. Also known as vector
processing. This style of programming implements data-level parallelism.

SL1 A first-level cache for DMA transfers between local storage and main storage

SLB Segment lookaside buffer. It is used to map an effective address to a virtual
address.

slbia SLB invalidate all instruction

slbie SLB invalidate entry instruction

slbmfee SLB move-from entry ESID X-form instruction

slbmfev SLB move-from entry VSID X-form instruction

slbmte SLB move-to entry X-form instruction

SLI state lost and isolated

sndsig send signal command

sndsigb update signal-notification registers in an I/O device or another SPU with barrier
command
Version 1.02
October 11, 2007

Glossary

Page 337 of 358

Cell Broadband Engine Architecture
sndsigf update signal-notification registers in an I/O device or another SPU with fence
command

snoop To compare an address on a bus with a tag in a cache to detect operations that
violate memory coherency.

SPE Synergistic Processor Element. Consists of a synergistic processor unit (SPU), a
memory flow controller (MFC), and local storage (LS).

SPR special purpose register

SPU Synergistic processor unit. The part of an SPE that executes instructions from its
local storage (LS).

SRI state retained and isolated

SRR0/SRR1 Save and Restore Register 0 and 1

stdcx store doubleword conditional indexed instruction

stmw store multiple word instruction

storage model A CBEA-compliant processor implements two concurrent storage models for an
application program: the virtual storage model of the PPE (also used by MFCs for
DMA operations), and the local storage model of the SPU. For more information
about storage models, see Section 3 on page 41.

stswi store string word immediate instruction

stswx store string word indexed x-form instruction

stwcx store word conditional x-form instruction

sync synchronize instruction

synchronization The process of arranging storage operations to complete in the order of occur-
rence.

TAG MFC command tag

tag group A group of DMA commands. Each DMA command is tagged with a 5-bit tag group
identifier. Software can use this identifier to check or wait on the completion of all
queued commands in one or more tag groups. All DMA commands except getllar,
putllc, and putlluc are associated with a tag group.

TG tag parameter

time base Chip-level time base, as defined in the PowerPC Architecture and in Cell Broad-
band Engine Book IV.

TLB Translation lookaside buffer. An on-chip cache that translates virtual addresses
(VAs) to real addresses (RAs). A TLB caches page-table entries for the most
recently accessed pages, thereby eliminating the necessity to access the page
table from memory during load-store operations.
Glossary

Page 338 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
tlbie translation lookaside buffer invalidate entry instruction

TS The transfer-size parameter in an MFC command

UME User mode environment. The instruction set, base command set, storage models,
and facilities available to an application programmer.

vector An instruction operand containing a set of data elements packed into a one-dimen-
sional array. The elements can be fixed-point or floating-point values. Most
Vector/SIMD Multimedia Extension and SPU SIMD instructions operate on vector
operands. Vectors are also called SIMD operands or packed operands.

vector/SIMD multimedia
extension

The SIMD instruction set of the PowerPC Architecture typically supported on a
PPE.

virtual address An address to the virtual-memory space, which is typically much larger than the
real address space and includes pages stored on disk. It is translated from an
effective address by a segmentation mechanism and used by the paging mecha-
nism to obtain the real address (RA). The maximum size of the virtual-address
space is 265 bytes.

VPN Virtual page number. The number of the page in virtual memory.

VS virtual storage

VSID virtual segment ID

WIMG bits Four bits in the page table, also called a page-table entry, which control the
processor's accesses to cache and main storage. “W” stands for write through, “I”
for cache inhibit, “M” for memory coherence, and “G” for guarded storage.

word Four bytes.

wrch write to channel instruction
Version 1.02
October 11, 2007

Glossary

Page 339 of 358

Cell Broadband Engine Architecture
Glossary

Page 340 of 358

 Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
Index

Numerics

4-byte operation (sndsig), 77
5-bit identifier, 92, 126

A

access
atomic, 42, 180
overlapped, MFC, 180
protection, 53

access exceptions
local storage, 42

access ordering
cross-domain storage, 180
cumulative, 180
examples, 321
local storage, 179
storage, 175

acknowledgment channels
MFC Write List Stall-and-Notify Tag Acknowledgment

Channel, 136
SPU Write Event Acknowledgment Channel, 161

acronyms, 329
active state, power management, 285
Address Compare Control Register, MFC, 227
address range facility, PPE, 249
address range registers, 249
address registers

MFC Effective Address High, 86
MFC Effective Address Low, 87
MFC Local Storage Address, 85
MFC Local Storage Address Compare, 229

addresses
converting (effective to real), 199
converting (effective to virtual), 199
converting (virtual to real), 199
effective

in address range facility, 250
list elements, 63
signal notification registers, 77

main storage attributes, 31
overlap, 42
real

converting to, 199
translations, 53, 199, 222

addressing
local storage, 30
main storage, 31

alignment errors, 61
atomic access, 180
atomic commands, 60, 314
Version 1.02
October 11, 2007

Atomic Flush Register, MFC, 236
atomic update commands, MFC, 70
atomicity, single-copy, 42
attributes

main storage, 31
attributes, storage control

caching inhibited, 44, 177, 218
guarded, 44, 177, 218
in real-mode, 218
memory coherence required, 44, 75–76, 178
write through required, 44

authentication and decryption master key, 184

B

barrier, 60, 76, 314
barrier commands

barrier, 60, 76, 314
defined commands and, 58
get lock line and reserve command and, 71
getb, 59, 64, 313
getbs, 59, 64, 313
getlb, 59, 65, 313
global, 77, 314
list commands and, 63
MFC atomic update commands and, 70
MFC synchronization commands, 73
occurrence of livelock with, 71
performance note, 76
put lock line conditional command and, 72
put lock line unconditional command and, 72
putb, 58, 66, 312
putlb, 66
sndsigb, 60, 78, 314
tag-specific, 63

barrier, global, 63
barrier, tag-specific, 63
Base Address Register (BP_Base), 79, 293
big-endian byte ordering, 18
binary compatibility with PowerPC, 47
bisled instruction, 153
boundedly undefined behavior, 319
BP_Base, 79, 293
BP_VR, 287

C

cache management instructions, 43
cache models

overview, 43
cache replacement management, 32, 255
caching inhibited

storage control attribute, 44, 177, 218
Index

Page 341 of 358

Cell Broadband Engine Architecture
CBEA-compliant processor
description, 27
illustration, 28
organization, 27

CBEA-compliant processor memory map, 294
CBEA-Compliant Processor Version Register, 287
Cell Broadband Engine Architecture, introduction to, 27
channel access facility, SPU, 242
Channel Count Register, SPU, 244
Channel Data Register, SPU, 243
channel input/output, 49
channel instructions, invalid, 113
channel map, SPU, 114, 305
channel names

MFC_ClassID, 118
MFC_Cmd, 117
MFC_EAH, 124
MFC_EAL, 122
MFC_LSA, 121
MFC_RdAtomicStat, 137
MFC_RdListStallStat, 135, 164
MFC_RdTagMask, 131
MFC_RdTagStat, 133
MFC_Size, 120
MFC_TagID, 119
MFC_WrListStallAck, 136, 164
MFC_WrMSSyncReq, 149
MFC_WrTagMask, 129
MFC_WrTagUpdate, 132
SPU_RdDec, 146
SPU_RdEventMask, 159
SPU_RdEventStat, 153
SPU_RdInMbox, 141
SPU_RdMachStat, 147
SPU_RdSigNotify1, 143
SPU_RdSigNotify2, 144
SPU_RdSRR0, 148
SPU_WrDec, 145
SPU_WrEventAck, 161
SPU_WrEventMask, 157
SPU_WrOutIntrMbox, 140
SPU_WrOutMbox, 139
SPU_WrSRR0, 148

channels
command parameter channels, MFC SPU, 116
MFC Class ID, 118
MFC Command Opcode, 117
MFC Command Tag Identification, 119
MFC Effective Address High, 124
MFC Effective Address Low or List Address, 122
MFC Local Storage Address, 121
MFC Read Atomic Command Status, 137
MFC Read List Stall-and-Notify Tag Status, 135
MFC Read Tag-Group Query Mask, 131
MFC Read Tag-Group Status, 133
MFC tag-group status, 126
Index

Page 342 of 358
MFC Transfer Size or List Size, 120
MFC Write List Stall-and-Notify Tag Acknowledgment,

136
MFC Write Multisource Synchronization Request, 149
MFC Write Tag Status Update Request, 132
MFC Write Tag-Group Query Mask, 129
reserved, 114, 305
signalling, 142
SPU Mailbox, 138
SPU Read Decrementer, 146
SPU Read Event Mask, 159
SPU Read Event Status, 153
SPU Read Inbound Mailbox, 141
SPU Read Machine Status, 147
SPU Read State Save-and-Restore, 148
SPU Signal Notification 1, 143
SPU Signal Notification 2, 144
SPU Write Decrementer, 145
SPU Write Event Acknowledgment, 161
SPU Write Event Mask, 157
SPU Write Outbound Interrupt Mailbox, 140
SPU Write Outbound Mailbox, 139
SPU Write State Save-and-Restore, 148

channels, SPU, 114
CIDR, 253
CL (class ID parameter), 62, 311
Class 0 Interrupt Mask Register, 276
Class 0 Interrupt Status Register, 280
class 0 interrupts

DMA alignment error interrupt, 269
MFC data segment error interrupt, 269
MFC data storage error interrupt, 269
overview, 270
SPU error interrupt, 269

Class 1 Interrupt Mask Register, 277
Class 1 Interrupt Status Register, 281
class 1 interrupts

MFC local storage address compare suspend on get
interrupt, 269

overview, 272
Class 2 Interrupt Mask Register, 278
Class 2 Interrupt Status Register, 282
class 2 interrupts

mailbox interrupt, 269
overview, 274
SPU halt instruction trap or single instruction step com-

plete interrupt, 270
SPU inbound mailbox threshold interrupt, 270
SPU stop-and-signal instruction trap, 269
tag-group completion interrupt, 270

class ID parameter (CL), 62, 311
Class ID Register, 253
command classes

defined, 36
illegal, 36
reserved, 36
Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
command completion, determining, 128
Command Error Register, MFC, 231
command exceptions, 61
command issue sequence

MFC proxy, 88
MFC SPU, 125

command modifiers
barrier, 73
barrier (b), 55, 75
fence, 73
fence (f), 55, 75
list (l), 55
performance hint (r), 55
start (s), 55

Command Opcode Channel, MFC, 117
Command Opcode Register, MFC, 81
command parameter channels, MFC SPU, 116, 306
command queue control registers, MFC proxy, 89
command queue, MFC proxy, 55, 91, 175
command queue, MFC SPU, 55, 175
command queues

MFC proxy, 55, 91, 175
MFC SPU, 55, 175

Command Status Register, MFC, 90
Command Tag Identification Channel, MFC, 119
commands

atomic, 314
atomic update, 70
barrier, 58–60, 70–73, 76–77, 313–314
classes, 57
command modifiers for, 55
data transfer, 58, 312
defined, 32, 36, 57, 60
exceptions, 60
execution ordering, 177
get, 64
get list with fence or barrier, 65
get with fence or with barrier, 64
get, table of, 59, 312
getb, 59, 313
getbs, 59
getf, 59
getfs, 59
getl, 65
getlb, 59
getlf, 59
getllar, 60, 70, 314
gets, 59
illegal, 37
introduction, MFC, 55
MFC enforce in-order execution of I/O, 76
MFC parameters, 62
MFC, overview, 55
mfceieio, 60, 70–73, 76, 178, 314, 327
mfcsync, 60, 70, 72–73, 75, 314, 324
mnemonics for parameters, 56, 311
Version 1.02
October 11, 2007

overview, 55
parameters, MFC, 62
put, 65
put with fence or with barrier, 66
put, table of, 58, 312
putb, 58, 312
putbs, 58
putf, 58
putfs, 58
putl, 58
putlb, 58
putlf, 58
putllc, 60, 70–71, 314
putlluc, 60, 72, 314
putqlluc, 60, 70, 72, 314
putr, 58, 66, 312
putrb, 58
putrf, 58
putrl, 58
putrlb, 58
putrlf, 58
puts, 55, 58, 65, 312
reserved, 37
sdcrf, 59, 69, 313
sdcrst, 59, 313
sdcrt, 59, 67, 313
sdcrtst, 59, 68, 313
sdcrz, 59, 68, 313
See also DMA commands, put commands, MFC com-

mands, and get commands
send signal, 77
SL1 data cache, 43
sndsig, 60, 77, 314
sndsigb, 60, 314
sndsigf, 60, 314
storage control, 59, 67, 313
synchronization, 60, 70, 72–73, 75, 314

mfcsync, 71
touch data cache range, SL1, 67

commands and instructions, defined
invalid forms, 38
optional forms, 38
preferred forms, 37

compatibility
binary to PowerPC, 47
PowerPC Architecture (Book I), 47
PowerPC Architecture (Book II), 48
PowerPC Architecture (Book III), 197

Configuration Register, SPU, 245
context save and restore registers

MFC_CNTL, 233
MFC_Cntl1_ImplRegs, 301
MFC_CSR_ImplRegs, 193, 301

context save and restore, SPE, 247
control commands, SL1 storage, 59, 313
Control Register, MFC, 233
Index

Page 343 of 358

Cell Broadband Engine Architecture
control registers
MFC Control, 233
SPU Privileged Control, 239

conventions and notation, 17
converting addresses (effective to real), 199
converting addresses (effective to virtual), 199
converting addresses (virtual to real), 199
cross-domain storage access ordering, 180
cumulative access ordering, 180
cumulative ordering, 108
cumulative ordering, example, 325

D

DAR, 225
Data Address Register, MFC, 225
data cache range touch command, 67
data range SPRs, 309
Data Storage Interrupt Status Register, 226
data transfer commands, 58, 312
dcbf instruction, 43
dcbst instruction, 43
dcbt instruction, 43
dcbt instruction, X-form, 48
dcbtst instruction, 43
dcbz instruction, 43
debug and power management area, 295
decrementer

SPU, 145
SPU Write Decrementer Channel, 145

decrementer channels, SPU, 305
decrementer halt (Dh) bit, 233
decrementer status (Ds) bit, 233
decryption and authentication key, 184
defined behavior for inaccessible SPRs, 319
defined commands, 57
defined commands and instructions

invalid forms, 38
optional forms, 38
preferred forms, 37

defined instructions and commands
invalid forms, 38
optional forms, 38
preferred forms, 37

destructive read, 264
direct external exception, 316
direct external interrupt, 316
direct memory access controller, 52
DMA alignment error interrupt, 269
DMA commands

get, 64
get list with fence or with barrier, 65
get with fence or with barrier, 64
getl, 64
getllar, 70
Index

Page 344 of 358
list elements, introduction, 63
list size limit, 63
put, 65–66
put with fence or with barrier, 66
putl, 66
putr, 66
puts, 65

DMA controller, 52
DMA data transfers, defined, 18
document organization, 15
documentation conventions, 17
domains

local storage, 30
main storage, 30

DSISR, 226

E

EAH, 311
EAL, 311
edge-triggered event, 152
Effective Address High Channel, MFC, 124
Effective Address Low or List Address Channel, MFC,

122
Effective Address Low Register, MFC, 87
effective addresses

list elements, 63
signal notification registers, 77
size of address space, 31

Effective Segment ID Register, SLB, 202
eieio instruction, 74–75
endian order, 18
enforce in-order execution of I/O command, MFC

(mfceieio), 76
event channels, SPU, 305
event facility, SPU, 150
event support, SPU, 151
events

edge-triggered, 152
lock line reservation lost, 170
MFC list command stall-and-notify, 163
MFC SPU command queue available, 165
MFC tag-group status update, 163
monitored, 150
multisource synchronization, 172
privileged attention, 172
SPU decrementer, 166
SPU events, introduction, 39
SPU inbound mailbox available, 166
SPU outbound interrupt mailbox available, 167
SPU outbound mailbox available, 168
SPU signal notification 1 available, 170
SPU signal notification 2 available, 169
support illustration, 151
Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
examples of
access ordering, 321
multisource synchronization, 110

exceptions
command, 60
introduction, 38
local storage access, 42
mediated external, 316

extensions
defined behavior for inaccessible SPRs, 319
mediated external exception, 316
multiple concurrent large pages, 318
software management of TLBs, 315
vector/SIMD multimedia, 29, 48, 319

external exceptions
direct, 316
mediated, 316

external interrupt controller, 262
external interrupt definitions, SPU and MFC, 269
external interrupt, direct, 316
external interrupt, mediated, 316
external interrupts, 261

F

facilities
address range, 249
cache replacement management, 32, 255
defined, 32
isolation, SPU, 183
mailbox, 101
MFC, 52
multisource synchronization, MFC, 108
privileged mode, 189
proxy tag-group completion, 92
real-mode address boundary, 218
real-mode storage control, 217
signal notification, SPU, 105
SPU control and status, 96
SPU event, 150
SPU isolation facility, 183
storage control, real-mode, 217

fields and registers, implementation-dependent, 33
fres instruction, A-form, 47
frsqte instruction, A-form, 47
functional components, CBEA, 27

G

get, 59, 64, 312
get commands

get, 59, 64, 312
get list with fence or with barrier option, 65
get with fence or with barrier, 64
Version 1.02
October 11, 2007

getb, 59
getbs, 59, 313
getf, 59, 313
getfs, 59, 313
getl, 64–65
getlb, 59, 313
getlf, 59, 313
getllar, 70
getllar (get lock-line and reserve), 70
gets, 59, 312
introduction, 64
table of, 59, 312

getl, 64
getb, 64
getbs, 59, 64, 313
getf, 59, 64, 313
getfs, 59, 64, 313
getl, 65
getlb, 59, 65, 313
getlf, 59, 65, 313
getllar, 60, 70, 314
gets, 59, 64, 312
global barrier command, 63
guarded pages, in list transfers, 63
guarded, storage control attribute, 44, 177, 218

H

Harvard-style cache, 43
hypervisor

causing mediated external interrupts, 316
use with multiple operating systems, 189

I

icbi instruction, 43
IDEA (implementation-dependent expansion area), 293,

295
Identification Register, SPU, 291
IIC (internal interrupt controller)

area, 295
CBEA organization, 27
description, 30
interrupts sent to, 262
memory map, 293, 303
thread control block, 295

illegal instructions, 37
implementation-dependent expansion area (IDEA), 293,

295
implementation-dependent fields

overview, 33
implementation-dependent fields and registers, 33
Index

Page 345 of 358

Cell Broadband Engine Architecture
implementation-dependent registers
Base Address Register, 79, 293
BP_Base, 293
L2_RMT_Data, 195
L2_RMT_Index, 195
MFC Atomic Flush Register, 190, 236
MFC Context Save and Restore, 193
MFC Real-Mode Address Boundary Register, 218
MFC_Atomic_Flush, 190, 236
MFC_Cntl1_ImplRegs, 193
MFC_CSR_ImpRegs, 193
MFC_RMAB, 218
MFC_TLB_RMT_Data, 191
MFC_TLB_RMT_Index, 191
overview, 33
privilege 1, 192, 300
privilege 2, 194
PV2_ImplRegs, 194
RMT Data Register, 195, 258
RMT Index Register, 195, 257
RMT_Data, 258
RMT_Index, 257
SPE_MMU_ImplRegs, 191
SPE_RMT_ImplRegs, 191
SPU cache hardware registers, 190
SPU_Cache_ImpRegs, 190

inaccessible SPRs
defined behavior for, 319

Inbound Mailbox Register, SPU, 103
incompatibilities

PowerPC Architecture (Book I), 47
PowerPC Architecture (Book II), 48
PowerPC Architecture (Book III), 197

index generation
replacement management table, 256
RMT example, 257

Index Hint Register, TLB, 209
Index Register, SLB, 201
Index Register, TLB, 210
instruction caused interrupt, 261
instruction classes

defined, 36
illegal, 36
reserved, 36

instruction range SPRs, 309
instructions

bisled, 153
branch-conditional, 47
cache management

dcbf, 43
dcbst, 43
dcbt, 43
dcbtst, 43
dcbz, 43
icbi, 43

dcbf, 43
Index

Page 346 of 358
dcbst, 43
dcbt, 43
dcbt, X-form, 48
dcbtst, 43
dcbz, 43
defined, 32
defined class, 36
eieio, 74–75
fres, 47
fres, A-form, 47
frsqte, 47
frsqte, A-form, 47
icbi, 43
illegal class, 37
invalid channel, 113
ld, 291
ldarx, 70
lwarx, 70
lwsync, 74
mfspr, 209–212
mtspr, 210–212
reserved class, 37
SLB

slbia, 200
slbie, 200
slbmfee, 200
slbmfev, 200
slbmte, 200

slbia, 200
slbie, 200
slbmfee, 200
slbmfev, 200
slbmte, 200
stdcx., 70
stwcx., 70
sync, 74
TLB

tlbia, 216
tlbie, 208, 214
tlbiel, 214

tlbia, 216
tlbie, 208, 214
tlbiel, 214

instructions and commands, defined
invalid forms, 38
optional forms, 38
preferred forms, 37

INT_CPL, 268
INT_Mask_class0, 276
INT_Mask_class1, 277
INT_Mask_class2, 278
INT_Stat_class0, 280
INT_Stat_class1, 281
INT_Stat_class2, 282
Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
internal interrupt controller (IIC)
area, 295
CBEA organization, 27
description, 30
interrupts sent to, 262
memory map, 293, 303
registers, 263
thread control block, 295

interprocessor interrupts, 267
interrupt classes, 261

application (class 2), 269
error (class 0), 269
translation (class 1), 269

interrupt control block, 263
interrupt controller

external, 262
internal, 262

Interrupt Current Priority Level Register, 268
Interrupt Generation Port Register, 267
interrupt generation process

class 0, MFC, illustration, 271
class 1, MFC, illustration, 273
class 2, MFC, illustration, 275
SPU and MFC, 270

Interrupt Pending Port Register, 263
interrupt register names

INT_CPL, 268
INT_Generation, 267
INT_Mask_class0, 276
INT_Mask_class1, 277
INT_Mask_class2, 278
INT_Pending_D, 263
INT_Pending_NonD, 263
INT_Route, 283
INT_Stat_class0, 280
INT_Stat_class1, 281
INT_Stat_class2, 282

interrupt registers
Class 0 Interrupt Mask, 276
Class 0 Interrupt Status, 280
Class 1 Interrupt Mask, 277
Class 1 Interrupt Status, 281
Class 2 Interrupt Mask, 278
Class 2 Interrupt Status, 282
Interrupt Current Priority Level Register, 268
Interrupt Generation Port, 267
Interrupt Pending Port, 263
Interrupt Routing, 283

Interrupt Routing Register, 283
interrupt status registers, overview, 279
interrupt-related channels, SPU, 148
interrupts

class 0, 270
class 1, 272
class 2, 274
class definitions, MFC and SPU, 269
Version 1.02
October 11, 2007

external, 261
external interrupt definitions, SPU and MFC, 269
instruction caused, 261
interprocessor, 267
system caused, 261

invalid channel instruction, 113
invalid instructions, 38
Invalidate All Register, SLB, 206
Invalidate All Register, TLB, 216
Invalidate Entry Register, SLB, 205
Invalidate Entry Register, TLB, 214
invalidate selector (IS) field, 315
IS (invalidate sector) field, 315
isolated state, power management, 285
isolation facility, SPU, 183

L

LA (list local storage address) parameter, 63, 311
large page sizes, 212
large pages

multiple concurrent, 318
ld instruction, 291
ldarx instruction, 70
LEAL (List Effective Address Low field), 64
LEAL (list effective address low) parameter, 63, 311
legal notice, 2
list commands, 63, 135
list effective address low (LEAL) parameter, 63, 311
List Effective Address Low field (LEAL), 64
list element parameters

LA, 63
LEAL, 63
LTS, 63

list elements, 63, 135
list size (LSZ) parameter, 311
little-endian byte ordering, 18
load control bit, TLB, 315
load-store

architecture, 49
operations, 53

local storage
addressing, 30
defined, 30
MFC Local Storage Address Channel, 121
MFC Local Storage Address Register, 85
SPU Local Storage Limit Register, 241
SPU model, 41

local storage access
exceptions, 42
introduction, 42
mapping requirements, 42
ordering, 179

local storage address (LSA) parameter, 311
Local Storage Address Channel, MFC, 121
Index

Page 347 of 358

Cell Broadband Engine Architecture
local storage address parameter (LSA), 62
Local Storage Address Register, MFC, 85
local storage domain, 30
Local Storage Limit Register, SPU, 241
lock line reservation lost event, 170
Logical Partition ID Register, MFC, 223
logical partitioning, operating environment, 189
LSA (local storage address parameter), 62, 311
LSZ (list size parameter), 62, 311
LTS (list element transfer size), 63, 311
lwarx instruction, 70
lwsync instruction, 74

M

mailbox channels, SPU, 138
mailbox facility

overview, 101
SPU Inbound Mailbox Register, 103
SPU mailbox channels, 138
SPU Mailbox Status Register, 104
SPU Outbound Interrupt Mailbox, 237
SPU Outbound Mailbox Register, 102
SPU Read Inbound Mailbox Channel, 141
SPU Write Outbound Interrupt Mailbox Channel, 140
SPU_In_Mbox, 103
SPU_Mbox_Stat, 104
SPU_Out_Mbox, 102
SPU_RdInMbox Channel, 141
SPU_WrOutIntrMbox, 140
SPU_WrOutMbox, 139

mailbox interrupt, 269
Mailbox Status Register, SPU, 104
mailboxes, SPU, 306
main storage

addressing, 31
attributes, 31
defined, 30
sharing, 31

main storage addressing, 31
many-to-one signalling environment, 77
mapping requirements

local storage access, 42
mapping, TLB, 208
master key, authentication and decryption, 184
mediated external exception, 316
mediated external exception extension, 316
mediated external interrupt, 316
memory coherence

defined, 43
memory coherence required

storage control attribute, 44, 75–76, 178
memory flow controller (MFC)

block diagram, 51
CBEA organization, 27
Index

Page 348 of 358
description, 29
overview, 51
typical, 52

memory management unit (MMU), 53
memory maps

CBEA-compliant processor, 294
internal interrupt controller, 263, 303
introduction, 293
PPE privilege 1, 195, 302
SPE privilege 1, 190, 298
SPE privilege 2, 193, 301
SPE problem state, 79, 296

MFC (memory flow controller)
block diagram, 51
CBEA organization, 27
description, 29
overview, 51
typical, 52

MFC Address Compare Control Register, 227
MFC atomic commands

getllar, 314
putllc, 314
putlluc, 314
putqlluc, 314

MFC Atomic Flush Register, 236
MFC Command Error Register, 231
MFC Command Opcode Channel, 117
MFC Command Opcode Register, 81
MFC command parameters, 62
MFC Command Status Register, 90
MFC Command Tag Identification Channel, 119
MFC commands

barrier, 60
mfceieio, 60, 70–73, 76, 178, 314, 327
mfcsync, 60, 70–73, 75, 314
overview, 55
proxy, 55
See also commands
SPU, 55

MFC Control Register, 233
MFC Data Address Register, 225
MFC data segment error interrupt, 269
MFC data storage error interrupt, 269
MFC DMA commands, 55

See also commands
MFC DSI register names

MFC_DSIPR, 232
MFC_LSACR, 229
MFC_LSCRR, 230

MFC Effective Address High Channel, 124
MFC Effective Address Low or List Address Channel, 122
MFC Effective Address Low Register, 87
MFC facilities, see facilities
MFC Interrupt Routing Register, 283
MFC list command stall-and-notify event, 163
MFC Local Storage Address Channel, 121
Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
MFC local storage address compare suspend on get inter-
rupt, 269

MFC Local Storage Address Register, 85
MFC Logical Partition ID Register, 223
MFC multisource synchronization channels, 305
MFC multisource synchronization facility

example, 110
MFC Multisource Synchronization Register, 109
overview, 108

MFC Multisource Synchronization Register, 109
MFC overlapped access, 180
MFC proxy command issue sequence, 88
MFC proxy command queue, 91, 175
MFC proxy command queue status and control registers,

89
MFC proxy commands, 55
MFC Queue Status Register, 91
MFC Read Atomic Command Status Channel, 137
MFC Read List Stall-and-Notify Tag Status Channel, 135
MFC Read Tag-Group Query Mask Channel, 131
MFC Read Tag-Group Status Channel, 133
MFC Real-Mode Address Boundary Register, 218
MFC register names

MFC_ACCR, 227
MFC_Atomic_Flush, 236
MFC_CER, 231
MFC_ClassID, 82
MFC_CMD, 81
MFC_CMDStatus, 90
MFC_CNTL, 233
MFC_DAR, 225
MFC_DSIPR, 232
MFC_DSISR, 226
MFC_EAH, 86
MFC_EAL, 87
MFC_LPID, 223
MFC_LSA, 85
MFC_LSACR, 229
MFC_MSSync, 109
MFC_QStatus, 91
MFC_RMAB, 218
MFC_Size, 84
MFC_SR1, 221
MFC_Tag, 83
MFC_VR, 290

MFC registers
MFC Address Compare Control, 227
MFC Class ID, 82
MFC Command Error, 231
MFC Command Opcode, 81
MFC Command Status, 90
MFC Command Tag, 83
MFC Data Address, 225
MFC Data Storage Interrupt Pointer, 232
MFC Data Storage Interrupt Status, 226
MFC Effective Address High, 86
Version 1.02
October 11, 2007

MFC Effective Address Low, 87
MFC Local Storage Address, 85
MFC Local Storage Address Compare, 229
MFC Local Storage Compare Result, 230
MFC Logical Partition ID, 223
MFC Multisource Synchronization, 109
MFC Queue Status, 91
MFC State Register One, 221
MFC Storage Description, 224
MFC Transfer Size, 84
MFC Version, 290

MFC SPU command parameter channels, 116, 306
MFC SPU command queue available event, 165
MFC SPU commands, 55
MFC SPU queue, 175
MFC State Register One, 221
MFC Storage Description Register, 224
MFC synchronization commands

barrier, 314
mfceieio, 314
mfcsync, 314
sndsig, 314
sndsigb, 314
sndsigf, 314

MFC tag status channels, 306
MFC tag-group status update event, 163
MFC Transfer Size or List Size Channel, 120
MFC Version Register, 290
MFC Write List Stall-and-Notify Tag Acknowledgment

Channel, 136
MFC Write Multisource Synchronization Request Chan-

nel, 149
MFC Write Tag Status Update Request Channel, 132
MFC Write Tag-Group Query Mask Channel, 129
MFC_ACCR Register, 227
MFC_Atomic_Flush Register, 236
MFC_CER Register, 231
MFC_ClassID Channel, 118
MFC_ClassID Register, 82
MFC_Cmd Channel, 117
MFC_CMD Register, 81
MFC_CMDStatus Register, 90
MFC_CNTL Register, 233
MFC_DAR Register, 225
MFC_DSIPR Register, 232
MFC_DSISR Register, 226
MFC_EAH Channel, 124
MFC_EAH Register, 86
MFC_EAL Channel, 122
MFC_EAL Register, 87
MFC_LPID Register, 223
MFC_LSA Channel, 121
MFC_LSA Register, 85
MFC_LSCAR Register, 229
MFC_LSCRR Register, 230
MFC_MSSync Register, 109
Index

Page 349 of 358

Cell Broadband Engine Architecture
MFC_QStatus Register, 91
MFC_RdAtomicStat Channel, 137
MFC_RdListStallStat Channel, 135
MFC_RdTagMask Channel, 131
MFC_RdTagStat Channel, 133
MFC_RMAB Register, 218
MFC_SDR Register, 224
MFC_Size Channel, 120
MFC_Size Register, 84
MFC_SR1 Register, 221
MFC_Tag Register, 83
MFC_TagID Channel, 119
MFC_VR Register, 290
MFC_WrListStallAck Channel, 136
MFC_WrMSSyncReq Channel, 149
MFC_WrTagMask Channel, 129
MFC_WrTagUpdate Channel, 132
mfceieio command, 60, 70–73, 76, 178, 314
mfceieio command, example, 327
mfcsync command, 60, 70–73, 75, 314
mfcsync command, example, 324
mfspr instruction, 209–212
MMIO interface, 52
models

cache, 43
Harvard-style cache, 43
SPU local storage, 41

monitored events, 150
mtspr instruction, 210–212
multimedia extensions

vector/SIMD, 29
multiple concurrent large pages, 318
multisource synchronization channels, MFC, 305
multisource synchronization event, 172
multisource synchronization facility, MFC, 108
Multisource Synchronization Register, MFC, 109

N

Next Program Counter Register, SPU, 99
nondestructive read, 264, 279

O

one-to-one signalling environment, 77
operating environment

logical partitioning, 189
operating states, SPU, 185
optional fields, 38
optional instructions, 38
ordering, access

cross-domain storage, 180
cumulative, 180
local storage, 179
Index

Page 350 of 358
ordering, command execution, 177
organization, privileged mode facilities, 189
Outbound Interrupt Mailbox Register, SPU, 237
Outbound Mailbox Register, SPU, 102
overlap, addresses, 42
overlapped access, MFC, 180

P

page
defined, 41
large size, 212
real and virtual, 41

parameters, MFC command
CL, 311
EAH, 311
EAL, 311
LA, 311
LEAL, 311
LSA, 311
LSZ, 311
LTS, 311
overview, 62
TG, 311
TS, 311

pause state, power management, 285
Pending Event Register, SPU, 157
PMD (power management and debug) area, 293, 295
power area(p), 295
power management, 285
power management and debug (PMD) area, 293, 295
PowerPC instructions

ldarx, 70
lwarx, 70
lwsync, 74
mfspr, 209, 211
mtspr, 210–211
slbia, 200
slbie, 200
slbmfee, 200
slbmfev, 200
slbmte, 200
stdcx., 70
stwcx., 70
sync, 74
tlbia, 216
tlbie, 208, 214
tlbiel, 214

PowerPC Processor Element (PPE)
area, 293
CBEA organization, 27
compatibility, 47–48
description, 29
special purpose register map, 309
Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
PPE (PowerPC Processor Element)
area, 293
CBEA organization, 27
compatibility, 47–48
description, 29
special purpose register map, 309

PPE (PowerPC Processor Element) special purpose reg-
isters, 309

PPE privilege 1 memory map, 302
PPE Processor Version Register, 288
preemptive context switching, 247
privilege 1 register names

INT_Mask_class0, 276
INT_Mask_class1, 277
INT_Mask_class2, 278
INT_Route, 283
INT_Stat_class0, 280
INT_Stat_class1, 281
INT_Stat_class2, 282
MFC_ACCR, 227
MFC_Atomic_Flush, 236
MFC_CER, 231
MFC_DAR, 225
MFC_DSIPR, 232
MFC_DSISR, 226
MFC_LPID, 223
MFC_LSACR, 229
MFC_LSCRR, 230
MFC_RMAB, 218
MFC_SDR, 224
MFC_SR1, 221
MFC_VR, 290
PPEPV_ImplRegs, 195
RMT_Data, 258
RMT_Index, 257
SPU_ID, 291
SPU_VR, 289
TLB_Index, 210
TLB_Index_Hint, 209
TLB_Invalidate_All, 216
TLB_Invalidate_Entry, 214
TLB_RPN, 212
TLB_VPN, 211

privilege 1 registers
Class 0 Interrupt Mask, 276
Class 0 Interrupt Status, 280
Class 1 Interrupt Mask, 277
Class 1 Interrupt Status, 281
Class 2 Interrupt Mask, 278
Class 2 Interrupt Status, 282
implementation-dependent, 192, 300
Interrupt Routing, 283
introduction to, 189
MFC Address Compare Control, 227
MFC Atomic Flush, 236
MFC Command Error, 231
Version 1.02
October 11, 2007

MFC Data Address, 225
MFC Data Storage Interrupt Pointer, 232
MFC Data Storage Interrupt Status, 226
MFC Local Storage Address Compare, 229
MFC Local Storage Compare Result, 230
MFC Logical Partition ID, 223
MFC Real-Mode Address Boundary, 218
MFC State Register One, 221
MFC Storage Description, 224
MFC Version, 290
PPE Processor Version, 288
RMT Data, 258
RMT Index, 257
SPU Identification, 291
SPU Version, 289
TLB Index, 210
TLB Index Hint, 209
TLB Invalidate All, 216
TLB Invalidate Entry, 214
TLB Real Page Number, 212
TLB Virtual Page Number, 211

privilege 2 register names
MFC_CNTL, 233
MFC_Cntl1_ImplRegs, 301
MFC_CSR_ImplRegs, 193, 301
PV2_ImplRegs, 194, 302
SLB_ESID, 202
SLB_Index, 201
SLB_Invalidate_All, 206
SLB_VSID, 203
SPU_Cfg, 245
SPU_ChnlCnt, 244
SPU_ChnlData, 243
SPU_ChnlIndex, 242
SPU_LSLR, 241
SPU_Out_Intr_Mbox, 237
SPU_PrivCntl, 239

privilege 2 registers
MFC Control, 233
SLB Effective Segment ID, 202
SLB Index, 201
SLB Invalidate All, 206
SLB Invalidate Entry, 205
SPU Channel Count, 244
SPU Channel Data, 243
SPU Channel Index, 242
SPU Configuration, 245
SPU Local Storage Limit, 241
SPU Outbound Interrupt Mailbox, 237
SPU Privileged Control, 239

privileged area, SPE, 294
privileged attention event, 172
Privileged Control Register, SPU, 239
privileged mode environment, 27
Index

Page 351 of 358

Cell Broadband Engine Architecture
privileged mode facility
introduction to, 189
organization, 189

privileged state
SPE privilege 1 memory map, 190, 298, 301
SPE privilege 2 memory map, 193

privileged state area, 294
problem state, 294
problem state memory map, 79
Processor Version Register, CBEA-Compliant, 287
protection

access, 53
proxy command issue sequence, MFC, 88
proxy command queue status and control registers, MFC,

89
proxy command queue, MFC, 91, 175
proxy register names

Prxy_QueryMask, 94
Prxy_QueryType, 93
Prxy_TagStatus, 95

proxy registers
Proxy Tag-Group Query Mask, 94
Proxy Tag-Group Query Type, 93
Proxy Tag-Group Status, 95

proxy tag-group completion facility, 92
Proxy Tag-Group Query Mask Register, 94
Proxy Tag-Group Status Register, 95
Prxy_Query Mask Register, 94
Prxy_Query Type Register, 93
Purge (Pc) bit, 233
purge sequence (Pc and Ps), 234
put, 58, 65, 312
put commands

overview, 65
put, 58, 65–66, 312
putb, 58, 312
putbs, 58, 312
putf, 58, 312
putfs, 58, 312
putl, 58, 66, 312
putlb, 58, 312
putlf, 58, 312
putllc, 60, 70–71, 314
putlluc, 60, 72, 314
putqlluc, 60, 70, 72, 314
putr, 58, 66, 312
putrb, 58, 312
putrf, 58, 312
putrl, 58, 312
putrlb, 58, 312
putrlf, 58, 312
puts, 55, 58, 65, 312
table of, 58, 312

putb, 58, 66, 312
putbs, 58, 66, 312
putf, 58, 66, 312
Index

Page 352 of 358
putfs, 58, 66, 312
putl, 58, 66, 312
putlb, 58, 66, 312
putlf, 58, 66, 312
putllc, 60, 71, 314
putlluc, 60, 72, 314
putqlluc, 60, 72, 314
putr, 58, 312
putrb, 58, 312
putrf, 58, 312
putrl, 58, 312
putrlb, 58, 312
putrlf, 58, 312
puts, 55, 58, 65, 312
PV1_ImplRegs, 192, 300
PV2_ImplRegs, 194, 302
PVR, 288

Q

Queue Status Register, MFC, 91
queues

MFC proxy command, 175
MFC SPU command, 175

queuing
MFC command from SPU, 125

R

Range Mask Register, 252
range registers, 249
Range Start Register, 251
Read Atomic Command Status Channel, MFC, 137
read channels

MFC Read Atomic Command Status, 137
MFC Read List Stall-and-Notify Tag Status, 135
MFC Read Tag-Group Query Mask, 131
MFC Read Tag-Group Status, 133
SPU Read Decrementer, 146
SPU Read Event Mask, 159
SPU Read Event Status, 153
SPU Read Inbound Mailbox Channel, 141
SPU Read Machine Status, 147
SPU Read State Save-and-Restore, 148

Read Decrementer Channel, SPU, 146
Read Event Mask Channel, SPU, 159
Read Event Status Channel, SPU, 153
Read Inbound Mailbox Channel, SPU, 141
Read List Stall-and-Notify Tag Status Channel, MFC, 135
Read Machine Status Channel, SPU, 147
Read State Save-and-Restore Channel, SPU, 148
Read Tag-Group Query Mask Channel, MFC, 131
Read Tag-Group Status Channel, MFC, 133
reads, destructive, 264
Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
reads, nondestructive, 264, 279
real address

converting, 199
local storage access to, 42
local storage addressing, 30
main storage addressing, 31
size of address space, 31

real addressing mode, 217, 251
real page, 41
Real Page Number Register, TLB, 212
real-mode address boundary facility, MFC, 218
Real-Mode Address Boundary Register, MFC, 218
real-mode storage control facilities, 217
register names

BP_Base, 293
BP_VR, 287
CIDR, 253
INT_CPL, 268
INT_Generation, 267
INT_Mask_class0, 276
INT_Mask_class1, 277
INT_Mask_class2, 278
INT_Pending_D, 263
INT_Pending_NonD, 263
INT_Route, 283
INT_Stat_class0, 280
INT_Stat_class1, 281
INT_Stat_class2, 282
MFC_ACCR, 227
MFC_Atomic_Flush, 236
MFC_CER, 231
MFC_ClassID, 82
MFC_CMD, 81
MFC_CMDStatus, 90
MFC_CNTL, 233
MFC_Cntl1_ImplRegs, 301
MFC_CSR_ImplRegs, 193, 301
MFC_DAR, 225
MFC_DSIPR, 232
MFC_DSISR, 226
MFC_EAH, 86
MFC_EAL, 87
MFC_LPID, 223
MFC_LSA, 85
MFC_LSACR, 229
MFC_LSCRR, 230
MFC_MSSync, 109
MFC_QStatus, 91
MFC_RMAB, 218
MFC_SDR, 224
MFC_Size, 84
MFC_SR1, 221
MFC_Tag, 83
MFC_TLB_RMT_Index, 257
MFC_VR, 290
PPEPV_ImplRegs, 195
Version 1.02
October 11, 2007

Prxy_QueryMask, 94
Prxy_QueryType, 93
Prxy_TagStatus, 95
PV2_ImplRegs, 194, 302
PVR, 288
RMR, 252
RMT, 255
RMT_Data, 258
RMT_Index, 257
RSR, 251
SLB_ESID, 202
SLB_Index, 201
SLB_Invalidate_All, 206
SLB_Invalidate_Entry, 205
SLB_VSID, 203
SPU_Cache_ImplRegs, 190
SPU_Cfg, 245
SPU_ChnlCnt, 244
SPU_ChnlData, 243
SPU_ChnlIndex, 242
SPU_ID, 291
SPU_In_Mbox, 103
SPU_LSLR, 241
SPU_Mbox_Stat, 104
SPU_NPC, 99
SPU_Out_Intr_Mbox, 237
SPU_Out_Mbox, 102
SPU_PrivCntl, 239
SPU_RunCntl, 96
SPU_Sig_Notify_1, 106
SPU_Sig_Notify_2, 107
SPU_Status, 97
SPU_VR, 289
TLB_Index, 210
TLB_Index_Hint, 209
TLB_Invalidate_All, 216
TLB_Invalidate_Entry, 214
TLB_RPN, 212
TLB_VPN, 211

register representation, 18
registers

Address Range, 249
Base Address Register, 293
CBEA-Compliant Processor Version, 287
Class 0 Interrupt Mask, 276
Class 0 Interrupt Status, 280
Class 1 Interrupt Mask, 277
Class 1 Interrupt Status, 281
Class 2 Interrupt Mask, 278
Class 2 Interrupt Status, 282
Class ID, 253
command queue control, proxy, 89
Interrupt Current Priority Level, 268
Interrupt Generation Port, 267
Interrupt Pending Port, 263
Interrupt Routing, 283
Index

Page 353 of 358

Cell Broadband Engine Architecture
MFC Address Compare Control, 227
MFC Atomic Flush, 236
MFC Class ID, 82
MFC Command Error, 231
MFC Command Opcode, 81
MFC Command Status, 90
MFC Command Tag, 83
MFC Control, 233
MFC Data Address, 225
MFC Data Storage Interrupt Pointer, 232
MFC Data Storage Interrupt Status, 226
MFC Effective Address High, 86
MFC Effective Address Low, 87
MFC Local Storage Address, 85
MFC Local Storage Address Compare, 229
MFC Local Storage Compare Result, 230
MFC Logical Partition ID, 223
MFC Multisource Synchronization, 109
MFC Queue Status, 91
MFC Real-Mode Address Boundary, 218
MFC State Register One, 221
MFC Status Interrupt, 226
MFC Storage Description, 224
MFC Transfer Size, 84
MFC Version, 290
PPE Processor Version, 288
problem state memory map, 79, 296
Proxy Tag-Group Query Mask, 94
Proxy Tag-Group Query Type, 93
Proxy Tag-Group Status Register, 95
Range Mask, 252
Range Start, 251
RMT Data, 258
RMT Index, 257
SLB Effective Segment ID, 202
SLB Index, 201
SLB Invalidate All, 206
SLB Invalidate Entry, 205
SLB Virtual Segment ID, 203
special purpose, 209–210
SPU Channel Count, 244
SPU Channel Data, 243
SPU Channel Index, 242
SPU Configuration, 245
SPU Identification, 291
SPU Inbound Mailbox, 103
SPU Local Storage Limit, 241
SPU Mailbox Status, 104
SPU Next Program Counter, 99
SPU Outbound Interrupt Mailbox, 237
SPU Outbound Mailbox, 102
SPU Pending Event, 157
SPU Privileged Control, 239
SPU Run Control, 96
SPU Signal Notification 1, 106
Index

Page 354 of 358
SPU Signal Notification 2, 107
SPU Status, 97
SPU Version, 289
standard representation, 18
TLB Index, 210
TLB Index Hint, 209
TLB Invalidate All, 216
TLB Invalidate Entry, 214
TLB Real Page Number, 212
TLB Virtual Page Number, 211

related publications, 16
replacement management

cache, 32, 255
replacement management table (RMT)

CBEA organization, 27
example, 255
Replacement Management Table Register, 255
SPU component, 27

replacement management table (RMT) SPRs, 309
Replacement Management Table Data Register, 258
Replacement Management Table Index Register, 257
requesters, resource allocation management, 259
required features (for CBEA)

optional in PowerPC Architecture (Book I and Book II),
47

optional in the PowerPC Architecture (Book III), 197
reserved bits

handling, 33
preserving state, 33

reserved channels, 114, 305
reserved fields, 32
reserved registers, setting to zero, 33
resource allocation group (RAG), 259
resource allocation management, 259
restart (R) bit, 233–234
restore and save, context, SPE, 247
restrictions

SPU, 49
revision log, 19
RMR, 252
RMT (replacement management table)

CBEA organization, 27
example, 255
Replacement Management Table Register, 255
SPU component, 27

RMT Data Register, 258
RMT register names

MFC_TLB_RMT_Index, 257
RMT registers

Index Mask, 256
Index Off, 256
RMT Data, 258
RMT Index, 257

RMT_Index, 257
Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
RSR, 251
Run Control, SPU, 96

S

S (Stall-and-Notify bit), 63
save and restore, context, SPE, 247
sdcrf, 59, 69, 313
sdcrst, 59, 69, 313
sdcrt, 59, 67, 313
sdcrtst, 59, 68, 313
sdcrz, 59, 68, 313
segment lookaside buffer management, PPE, 200
send signal command, 77
shared storage, 45
signal control registers, 77
Signal Notification 1 Channel, SPU, 143
Signal Notification 1 Register, SPU, 106
Signal Notification 2 Channel, SPU, 144
Signal Notification 2 Register, SPU, 107
signal notification channels, SPU, 305
signal notification facility, SPU, 105
signal notification registers

SPU Signal Notification 1, 106
SPU Signal Notification 2, 107

signal, send command, 77
signalling channels, 142
signalling environment

many-to-one, 77
one-to-one, 77

SIMD (single instruction, multiple data), 29, 49
single instruction step mode, 239
single instruction, multiple data (SIMD), 29, 49
single-copy atomicity, 42
size of list, 63
sizes of main storage address space, 31
SL1 data cache commands

description, 43
sdcrf, 69
sdcrst, 68
sdcrt, 67
sdcrtst, 68
sdcrz, 68

SL1 storage control, 59, 313
SL1 storage control commands

sdcrf, 59, 313
sdcrst, 59, 313
sdcrt, 59, 313
sdcrtst, 59, 313
sdcrz, 59, 313

SLB Effective Segment ID Register, 202
SLB Index Register, 201
SLB instructions

slbia, 200
slbie, 200
Version 1.02
October 11, 2007

slbmfee, 200
slbmfev, 200
slbmte, 200

SLB Invalidate All Register, 206
SLB Invalidate Entry Register, 205
SLB mapping, 200
SLB register names

SLB_ESID, 202
SLB_Index, 201
SLB_Invalidate_All, 206
SLB_Invalidate_Entry, 205
SLB_VSID, 203

SLB registers
SLB Effective Segment ID, 202
SLB Index, 201
SLB Invalidate All, 206
SLB Invalidate Entry, 205
SLB Virtual Segment ID, 203

SLB Virtual Segment ID Register, 203
SLB_ESID Register, 202
SLB_Index Register, 201
SLI (state lost and isolated), power management, 285
slow state, power management, 285
sndsig, 60, 77, 314
sndsigb, 60, 78, 314
sndsigf, 60, 78, 314
software management of TLBs, 315
SPE local storage, 294
SPE privilege 1 memory map, 298
SPE privilege 2 memory map, 301
SPE privileged area, 294
SPE problem state memory map, 296
special purpose register map, PPE, 309
special purpose registers

PPE, 309
TLB Index Hint (TLB_Index_Hint), 209
TLB Index Register (TLB_Index), 210

SPU (synergistic processor unit)
CBEA organization, 27
description, 29
overview, 49

SPU Channel Count Register, 244
SPU Channel Data Register, 243
SPU channel map, 114, 305
SPU channels, 114
SPU command parameter channels, MFC, 116, 306
SPU configuration, 245
SPU Configuration Register, 245
SPU control and status facilities, 96
SPU decrementer, 145
SPU decrementer channels, 305
SPU decrementer event, 166
SPU error interrupt, 269
SPU event channels, 305
SPU event facility, 150
SPU event support
Index

Page 355 of 358

Cell Broadband Engine Architecture
illustration, 151
SPU events

lock line reservation lost, 170
MFC list command stall-and-notify, 163
MFC SPU command queue available, 165
MFC tag-group status update event, 163
multisource synchronization, 172
privileged attention, 172
SPU decrementer, 166
SPU inbound mailbox available event, 166
SPU outbound interrupt mailbox available, 167
SPU outbound mailbox available, 168
SPU signal notification 1 available, 170
SPU signal notification 2 available, 169
support

illustration, 151
SPU events, introduction, 39
SPU halt instruction trap or single instruction step com-

plete interrupt, 270
SPU Identification Register, 291
SPU inbound mailbox available event, 166
SPU Inbound Mailbox Register, 103
SPU inbound mailbox threshold interrupt, 270
SPU interrupt-related channels, 148
SPU isolation facility, 183
SPU Local Storage Limit Register, 241
SPU local storage problem state area, 293
SPU mailbox channels, 138
SPU Mailbox Status Register, 104
SPU mailboxes, 115, 306
SPU Next Program Counter Register, 99
SPU operating states, 185
SPU outbound interrupt mailbox available event, 167
SPU Outbound Interrupt Mailbox Register, 237
SPU outbound mailbox available event, 168
SPU Outbound Mailbox Register, 102
SPU Pending Event Register, 157
SPU Privileged Control Register, 239
SPU Read Decrementer Channel, 146
SPU Read Event Mask Channel, 159
SPU Read Event Status Channel, 153
SPU Read Inbound Mailbox Channel, 141
SPU Read Machine Status Channel, 147
SPU Read State Save-and-Restore Channel, 148
SPU register names

SPU_Cache_ImplRegs, 190
SPU_Cfg, 245
SPU_ChnlCnt, 244
SPU_ChnlData, 243
SPU_ChnlIndex, 242
SPU_ID, 291
SPU_In_Mbox, 103
SPU_LSLR, 241
SPU_Mbox_Stat, 104
SPU_NPC, 99
SPU_Out_Intr_Mbox, 237
Index

Page 356 of 358
SPU_Out_Mbox, 102
SPU_PrivCntl, 239
SPU_RunCntl, 96
SPU_Sig_Notify_1, 106
SPU_Sig_Notify_2, 107
SPU_Status, 97
SPU_VR, 289

SPU registers
SPU Channel Count, 244
SPU Channel Data, 243
SPU Channel Index, 242
SPU Configuration Register, 245
SPU Identification, 291
SPU Inbound Mailbox, 103
SPU Local Storage Limit, 241
SPU Mailbox Status, 104
SPU Next Program Counter, 99
SPU Outbound Interrupt Mailbox, 237
SPU Outbound Mailbox, 102
SPU Privileged Control, 239
SPU Run Control, 96
SPU Signal Notification 1, 106
SPU Signal Notification 2, 107
SPU Status, 97
SPU Version, 289

SPU signal notification 1 available event, 170
SPU Signal Notification 1 Channel, 143
SPU Signal Notification 1 Register, 106
SPU signal notification 2 available event, 169
SPU Signal Notification 2 Channel, 144
SPU Signal Notification 2 Register, 107
SPU signal notification channels, 305
SPU signal notification facility, 105
SPU signal notification registers

SPU Signal Notification 1, 106
SPU Signal Notification 2, 107

SPU signalling channels, 142
SPU state management channels, 306
SPU Status Register, 97
SPU stop-and-signal instruction trap, 269
SPU Version Register, 289
SPU Write Decrementer Channel, 145
SPU Write Event Acknowledgment Channel, 161
SPU Write Event Mask Channel, 157
SPU Write Outbound Interrupt Mailbox Channel, 140
SPU Write Outbound Mailbox Channel, 139
SPU Write State Save-and-Restore Channel, 148
SPU_Cfg Register, 245
SPU_ChnlCnt Register, 244
SPU_ChnlData Register, 243
SPU_ChnlIndex Register, 242
SPU_ID Register, 291
SPU_In_Mbox Register, 103
SPU_LSLR, 241
SPU_NPC Register, 99
SPU_Out_Intr_Mbox, 237
Version 1.02
October 11, 2007

 Cell Broadband Engine Architecture
SPU_Out_Mbox Register, 102
SPU_PrivCntl Register, 239
SPU_RdDec Register, 146
SPU_RdEventMask Channel, 159
SPU_RdEventStat Channel, 153
SPU_RdInMbox Channel, 141
SPU_RdMachStat Channel, 147
SPU_RdSigNotify1 Channel, 143
SPU_RdSigNotify2 Channel, 144
SPU_RdSRR0 Channel, 148
SPU_RunCntl Register, 96
SPU_Sig_Notify_1 Register, 106
SPU_Sig_Notify_2 Register, 107
SPU_Status Register, 97
SPU_VR Register, 289
SPU_WrDec Channel, 145
SPU_WrEventAck Channel, 161
SPU_WrEventMask Channel, 157
SPU_WrOutIntrMbox Channel, 140
SPU_WrOutMbox Channel, 139
SPU_WrSRR0 Channel, 148
stall-and-notify bit, for list elements, 63
state lost and isolated (SLI), power management, 285
state management channels, SPU, 306
State Register One, MFC, 221
state retained and isolated (SRI), power management,

285
states

power management, 285
SPU operating, 185

status channels
MFC Read Atomic Command Status, 137
MFC Read List Stall-and-Notify Tag Status, 135
MFC Read Tag-Group Status, 133
MFC Tag-Group Status, 126
SPU Read Event Status, 153
SPU Read Machine Status, 147

status of tag groups, determining, 126
Status Register, SPU, 97
status registers

SPU Mailbox Status, 104
SPU Status, 97

stdcx. instruction, 70
storage access ordering, 175
storage control attributes

caching inhibited, 177
guarded, 44, 177
memory coherence required, 44, 75–76, 178
overview, 44
real-mode, 218
write through required, 44

storage control commands, 67
storage control, real-mode facilities, 217
Storage Description Register, MFC, 224
storage domains

illustration, 176
Version 1.02
October 11, 2007

storage models
description, 41
local storage, 41
virtual storage, 41

storage types, 30
stwcx. instruction, 70
suspend (Sc) bit, 233
symbols used, 17
sync instruction, 74
synchronization commands

barrier, 60, 70–72, 76
mfceieio, 60, 70–73
mfcsync, 60, 70–73, 75, 314
sndsig, 60
sndsigb, 60
sndsigf, 60
table of, 314

synergistic processor unit (SPU)
CBEA organization, 27
description, 29
overview, 49

system caused interrupts, 261

T

tag groups
determining status, 126
MFC Read Tag-Group Query Mask Channel, 131
MFC Read Tag-Group Status Channel, 133
MFC Write Tag Status Update Request Channel, 132
MFC Write Tag-Group Query Mask Channel, 129

tag specific barrier command, 63
tag status channels, MFC, 306
tag-group completion condition, 93
tag-group completion interrupt, 270
tag-group status completion, example, 323
tag-independent barrier command, example, 322
tag-specific barrier, 55, 63
tag-specific fence, 55
TG (command tag parameter), 62, 311
TLB (translation lookaside buffer) management SPRs,

310
TLB Index Hint Register, 209
TLB Index Register, 210
TLB instructions

tlbia, 216
tlbie, 208, 214
tlbiel, 214

TLB Invalidate All Register, 216
TLB Invalidate Entry Register, 214
TLB load control bit, 315
TLB mapping, 208
TLB Real Page Number Register, 212
TLB register names

TLB_Index, 210
Index

Page 357 of 358

Cell Broadband Engine Architecture
TLB_Index_Hint, 209
TLB_Invalidate_All, 216
TLB_Invalidate_Entry, 214
TLB_RPN, 212
TLB_VPN, 211

TLB registers
TLB Index, 210
TLB Index Hint, 209
TLB Invalidate All, 216
TLB Invalidate Entry, 214
TLB Real Page Number, 212
TLB Virtual Page Number, 211

TLB Virtual Page Number Register, 211
TLB_Index Register, 210
TLB_Invalidate_Entry Register, 214
TLB_RPN Register, 212
tlbie instruction, 208
TLBs, software management of, 315
trademarks, 2
Transfer Size or List Size Channel, MFC, 120
transfer size, sndsig command, 77
translation lookaside buffer (TLB) management SPRs,

310
translations, of addresses, 53
TS (transfer size parameter), 62, 311

U

UME (user mode environment), 35
user mode environment (UME), 35

V

vector/SIMD multimedia extension, 29, 48, 319
version control, 287
Version Register, MFC, 290
Version Register, SPU, 289
version registers

BP_VR, 287
CBEA-Compliant Processor Version Register, 287
MFC Version Register, 290
MFC_VR, 290
PPE Processor Version Register, 288
PVR, 288
SPU Identification Register, 291
SPU Version Register, 289
SPU_ID, 291
SPU_VR, 289

version SPRs, 309
virtual addresses

size of virtual address space, 31
virtual storage model, 41

virtual page, 41
Virtual Page Number Register, TLB, 211
Index

Page 358 of 358
Virtual Segment ID Register, SLB, 203
virtual storage model, 41
VMX, see vector/SIMD multimedia extension

W

write channels
MFC Write List Stall-and-Notify Tag Acknowledgment,

136
MFC Write Multisource Synchronization Request, 149
MFC Write Tag Status Update Request, 132
MFC Write Tag-Group Query Mask, 129
SPU Write Decrementer, 145
SPU Write Event Acknowledgment, 161
SPU Write Event Mask, 157
SPU Write Outbound Interrupt Mailbox, 140
SPU Write Outbound Mailbox, 139
SPU Write State Save-and-Restore, 148

Write Decrementer Channel, SPU, 145
Write Event Acknowledgment Channel, SPU, 161
Write Event Mask Channel, SPU, 157
Write List Stall-and-Notify Tag Acknowledgment Channel,

MFC, 136
Write Multisource Synchronization Request Channel,

MFC, 149
Write Outbound Interrupt Mailbox Channel, SPU, 140
Write Outbound Mailbox Channel, SPU, 139
Write State Save-and-Restore Channel, SPU, 148
Write Tag Status Update Request Channel, MFC, 132
Write Tag-Group Query Mask Channel, MFC, 129
write through required, storage control attribute, 44

Z

zeroing reserved registers, 33
Version 1.02
October 11, 2007

	Cell Broadband Engine Architecture
	Copyright and Disclaimer
	Contents
	List of Figures
	List of Tables
	Preface
	Who Should Read This Manual
	Document Organization
	Related Publications
	Conventions and Notation
	References to Registers, Fields, and Bits
	Endian Order

	Revision Log
	1. Introduction to Cell Broadband Engine Architecture
	1.1 Organization of a CBEA-Compliant Processor
	1.1.1 PowerPC Processor Element
	1.1.2 Synergistic Processor Unit
	1.1.3 Memory Flow Controller
	1.1.4 Internal Interrupt Controller

	1.2 Storage Types
	1.2.1 Local Storage Addressing
	1.2.2 Main Storage Addressing
	1.2.3 Main Storage Attributes

	1.3 Cache Replacement Management Facility
	1.4 Instructions, Commands, and Facilities
	1.5 Reserved Fields and Registers
	1.6 Implementation-Dependent Fields and Registers

	User Mode Environment
	2. Overview
	2.1 Instruction and Command Classes
	2.1.1 Defined Class
	2.1.2 Illegal Class
	2.1.3 Reserved Class

	2.2 Forms of Defined Instructions and Commands
	2.2.1 Preferred Forms
	2.2.2 Invalid Forms
	2.2.3 Optional Forms
	2.2.4 Optional Fields

	2.3 Exceptions
	2.4 SPU Events

	3. Storage Models
	3.1 Virtual Storage Model
	3.2 SPU Local Storage Model
	3.2.1 Local Storage Access
	3.2.1.1 Mapping Requirements
	3.2.1.2 Local Storage Access Exceptions

	3.3 Single-Copy Atomicity
	3.4 Cache Models
	3.5 Memory Coherence
	3.6 Storage Control Attributes
	3.7 Shared Storage

	4. PowerPC Processor Element
	4.1 PowerPC Architecture, Book I and Book II Compatibility
	4.1.1 Optional Features in PowerPC Architecture, Book I (Required for CBEA)
	4.1.2 Incompatibilities with PowerPC Architecture, Book I
	4.1.3 Optional Features in PowerPC Architecture, Book II (Required for CBEA)
	4.1.4 Incompatibilities with PowerPC Architecture, Book II
	4.1.5 Extensions to the PowerPC Architecture, Books I and II

	5. Synergistic Processor Unit
	6. Memory Flow Controller
	6.1 MFC Facilities

	7. MFC Commands
	7.1 Command Classes
	7.1.1 Defined Commands
	7.1.2 Illegal Commands
	7.1.3 Reserved Commands

	7.2 Command Exceptions
	7.3 MFC Command Parameters
	7.4 List Commands and List Elements
	7.5 Get Commands (Main Storage to Local Storage)
	7.5.1 Get Command
	7.5.2 Get with Fence or with Barrier Command
	7.5.3 Get List Command
	7.5.4 Get List with Fence or with Barrier Command

	7.6 Put Commands (Local Storage to Main Storage)
	7.6.1 Put Command
	7.6.2 Put with Fence or with Barrier Command
	7.6.3 Put List Command
	7.6.4 Put List with Fence or with Barrier Command
	7.6.5 Put Result (hint) Command

	7.7 Storage Control Commands
	7.7.1 SL1 Data Cache Range Touch Command
	7.7.2 SL1 Data Cache Range Touch for Store Command
	7.7.3 SL1 Data Cache Range Set to Zero Command
	7.7.4 SL1 Data Cache Range Store Command
	7.7.5 SL1 Data Cache Range Flush Command

	7.8 MFC Atomic Update Commands
	7.8.1 Get Lock Line and Reserve Command
	7.8.2 Put Lock Line Conditional Command
	7.8.3 Put Lock Line Unconditional Command
	7.8.4 Put Queued Lock Line Unconditional Command

	7.9 MFC Synchronization Commands
	7.9.1 MFC Synchronize Command
	7.9.2 MFC Enforce In Order Execution of I/O Command
	7.9.3 Barrier Command
	7.9.4 Send Signal Command
	7.9.5 Send Signal with Fence or with Barrier Command

	8. Problem-State Memory-Mapped Registers
	8.1 MFC Proxy Command Parameter Registers
	8.1.1 MFC Command Opcode Register
	8.1.2 MFC Class ID Register
	8.1.3 MFC Command Tag Register
	8.1.4 MFC Transfer Size Register
	8.1.5 MFC Local Storage Address Register
	8.1.6 MFC Effective Address High Register
	8.1.7 MFC Effective Address Low Register

	8.2 MFC Proxy Command Issue Sequence
	8.3 MFC Proxy Command Queue Status and Control Registers
	8.3.1 MFC Command Status Register
	8.3.2 MFC Queue Status Register

	8.4 Proxy Tag-Group Completion Facility
	8.4.1 Proxy Tag-Group Query Type Register
	8.4.2 Proxy Tag-Group Query Mask Register
	8.4.3 Proxy Tag-Group Status Register

	8.5 SPU Control and Status Facilities
	8.5.1 SPU Run Control Register
	8.5.2 SPU Status Register
	8.5.3 SPU Next Program Counter Register

	8.6 Mailbox Facility
	8.6.1 SPU Outbound Mailbox Register
	8.6.2 SPU Inbound Mailbox Register
	8.6.3 SPU Mailbox Status Register

	8.7 SPU Signal Notification Facility
	8.7.1 SPU Signal Notification 1 Register
	8.7.2 SPU Signal Notification 2 Register

	8.8 MFC Multisource Synchronization Facility
	8.8.1 MFC Multisource Synchronization Register

	9. Synergistic Processor Unit Channels
	9.1 MFC SPU Command Parameter Channels
	9.1.1 MFC Command Opcode Channel
	9.1.2 MFC Class ID Channel
	9.1.3 MFC Command Tag Identification Channel
	9.1.4 MFC Transfer Size or List Size Channel
	9.1.5 MFC Local Storage Address Channel
	9.1.6 MFC Effective Address Low or List Address Channel
	9.1.7 MFC Effective Address High Channel

	9.2 MFC SPU Command Issue Sequence
	9.3 MFC Tag-Group Status Channels
	9.3.1 Determining the Status of Tag Groups
	9.3.2 Determining Command Completion
	9.3.3 MFC Write Tag-Group Query Mask Channel
	9.3.4 MFC Read Tag-Group Query Mask Channel
	9.3.5 MFC Write Tag Status Update Request Channel
	9.3.6 MFC Read Tag-Group Status Channel
	9.3.7 MFC Read List Stall-and-Notify Tag Status Channel
	9.3.8 MFC Write List Stall-and-Notify Tag Acknowledgment Channel

	9.4 MFC Read Atomic Command Status Channel
	9.5 SPU Mailbox Channels
	9.5.1 SPU Write Outbound Mailbox Channel
	9.5.2 SPU Write Outbound Interrupt Mailbox Channel
	9.5.3 SPU Read Inbound Mailbox Channel

	9.6 SPU Signalling Channels
	9.6.1 SPU Signal Notification 1 Channel
	9.6.2 SPU Signal Notification 2 Channel

	9.7 SPU Decrementer
	9.7.1 SPU Write Decrementer Channel
	9.7.2 SPU Read Decrementer Channel

	9.8 SPU Read Machine Status Channel
	9.9 SPU Interrupt-Related Channels
	9.9.1 SPU Write State Save-and-Restore Channel
	9.9.2 SPU Read State Save-and-Restore Channel

	9.10 MFC Write Multisource Synchronization Request Channel
	9.11 SPU Event Facility
	9.11.1 SPU Read Event Status Channel
	9.11.2 SPU Write Event Mask Channel
	9.11.3 SPU Read Event Mask Channel
	9.11.4 SPU Write Event Acknowledgment Channel

	9.12 SPU Event Definitions
	9.12.1 MFC Tag-Group Status Update Event
	9.12.2 MFC List Command Stall-and-Notify Event
	9.12.3 MFC SPU Command Queue Available Event
	9.12.4 SPU Inbound Mailbox Available Event
	9.12.5 SPU Decrementer Event
	9.12.6 SPU Outbound Interrupt Mailbox Available Event
	9.12.7 SPU Outbound Mailbox Available Event
	9.12.8 SPU Signal Notification 2 Available Event
	9.12.9 SPU Signal Notification 1 Available Event
	9.12.10 Lock Line Reservation Lost Event
	9.12.11 Privileged Attention Event
	9.12.12 Multisource Synchronization Event

	10. Storage Access Ordering
	10.1 Order of Command Execution
	10.2 Main Storage Domain Access Ordering
	10.3 Local Storage Domain Access Ordering
	10.4 Cross-Domain Storage Access Order
	10.5 Cumulative Access Ordering
	10.6 MFC Overlapped Accesses
	10.7 Atomic Accesses
	10.8 Store Combining
	10.9 Storage Ordering of I/O Accesses

	11. SPU Isolation Facility
	11.1 SPU Isolation Facility Features
	11.2 SPU Operating States

	Privileged Mode Environment
	12. Overview
	12.1 Privileged Mode Facility Organization
	12.1.1 SPE Privilege 1 Facilities
	12.1.2 SPE Privilege 2 Facilities
	12.1.3 PPE Privilege 1 Facilities

	13. PowerPC Architecture, Book III Compatibility
	13.1 Optional Features in PowerPC Architecture, Book III (Required for CBEA)
	13.2 Incompatibilities with PowerPC Architecture, Book III
	13.3 Extensions to the PowerPC Architecture

	14. Storage Addressing
	14.1 PPE Segment Lookaside Buffer Management
	14.2 SPE Segment Lookaside Buffer Management
	14.2.1 SLB Mapping
	14.2.2 SLB Index Register
	14.2.3 SLB Effective Segment ID Register
	14.2.4 SLB Virtual Segment ID Register
	14.2.5 SLB Invalidate Entry Register
	14.2.6 SLB Invalidate All Register

	14.3 Translation Lookaside Buffer Management
	14.3.1 TLB Mapping
	14.3.2 TLB Index Hint Register
	14.3.3 TLB Index Register
	14.3.4 TLB Virtual Page Number Register
	14.3.5 TLB Real Page Number Register
	14.3.6 TLB Invalidate Entry Register
	14.3.7 TLB Invalidate All Register

	14.4 Real-Mode Storage Control Facilities
	14.4.1 PPE Real-Mode Storage Control Facility
	14.4.2 MFC Real-Mode Address Boundary Register

	15. MFC Privileged Facilities
	15.1 MFC State Register One
	15.2 MFC Logical Partition ID Register
	15.3 MFC Storage Description Register
	15.4 MFC Data Address Register
	15.5 MFC Data Storage Interrupt Status Register
	15.6 MFC Address Compare Control Register
	15.7 MFC Local Storage Address Compare Facility
	15.7.1 MFC Local Storage Address Compare Register
	15.7.2 MFC Local Storage Compare Result Register

	15.8 MFC Command Error Register
	15.9 MFC Data Storage Interrupt Pointer Register
	15.10 MFC Control Register
	15.11 MFC Atomic Flush Register
	15.12 SPU Outbound Interrupt Mailbox Register

	16. SPU Privileged Facilities
	16.1 SPU Privileged Control Register
	16.2 SPU Local Storage Limit Register
	16.3 SPU Channel Access Facility
	16.3.1 SPU Channel Index Register
	16.3.2 SPU Channel Data Register
	16.3.3 SPU Channel Count Register

	16.4 SPU Configuration Register

	17. SPE Context Save and Restore
	18. PPE Address Range Facility
	18.1 Range Start Register
	18.2 Range Mask Register
	18.3 Class ID Register

	19. Cache Replacement Management Facility
	19.1 Replacement Management Table Example
	19.2 RMT Index Generation Example
	19.2.1 RMT Index Register
	19.2.2 RMT Data Register

	20. Resource Allocation Management
	21. Interrupt Facilities
	21.1 Interrupt Classification
	21.2 Interrupt Presentation
	21.3 Internal Interrupt Controller Registers
	21.3.1 Interrupt Pending Port Registers
	21.3.2 Interrupt Generation Port Register
	21.3.3 Interrupt Current Priority Level Register

	21.4 SPU and MFC External Interrupt Definitions
	21.5 SPU and MFC Interrupt Generation Process
	21.5.1 Class 0 Interrupts
	21.5.2 Class 1 Interrupts
	21.5.3 Class 2 Interrupts

	21.6 MFC Interrupt Mask Registers
	21.6.1 Class 0 Interrupt Mask Register
	21.6.2 Class 1 Interrupt Mask Register
	21.6.3 Class 2 Interrupt Mask Register

	21.7 MFC Interrupt Status Registers
	21.7.1 Class 0 Interrupt Status Register
	21.7.2 Class 1 Interrupt Status Register
	21.7.3 Class 2 Interrupt Status Register

	21.8 Interrupt Routing Register

	22. Power Management
	23. Version Control
	23.1 CBEA-Compliant Processor Version Register
	23.2 PPE Processor Version Register
	23.3 SPU Version Register
	23.4 MFC Version Register
	23.5 SPU Identification Register

	Appendix A. Memory Maps
	A.1 SPE Problem State Memory Map
	A.2 SPE Privilege 1 Memory Map
	A.3 SPE Privilege 2 Memory Map
	A.4 PPE Privilege 1 Memory Map
	A.5 Internal Interrupt Controller Memory Map

	Appendix B. SPU Channel Map
	Appendix C. CBEA-Specific PPE Special Purpose Registers
	Appendix D. Defined Commands
	Appendix E. Extensions to the PowerPC Architecture
	E.1 Software Management of TLBs (optional)
	E.2 Mediated External Exception Extension (optional)
	E.2.1 Using the Mediated External Exception Extension

	E.3 Multiple Concurrent Large Pages (optional)
	E.4 Defined Behavior for Inaccessible SPRs
	E.5 Vector/SIMD Multimedia Extension (optional)

	Appendix F. Examples of Access Ordering
	Glossary
	Index

